SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-200763"
 

Sökning: id:"swepub:oai:DiVA.org:kth-200763" > Influence of a coro...

Influence of a coronal envelope as a free boundary to global convective dynamo simulations

Warnecke, J. (författare)
Käpylä, Petri J. (författare)
KTH,Nordic Institute for Theoretical Physics NORDITA,Max-Planck-Institut für Sonnensystemforschung, Germany; Aalto University, Finland; Leibniz-Institut für Astrophysik Potsdam, Germany
Kaepylae, M. J. (författare)
visa fler...
Brandenburg, Axel (författare)
Stockholms universitet,KTH,Nordic Institute for Theoretical Physics NORDITA,Institutionen för astronomi,Nordiska institutet för teoretisk fysik (Nordita),University of Colorado, USA; Laboratory for Atmospheric and Space Physics, USA
visa färre...
 (creator_code:org_t)
2016-12-15
2016
Engelska.
Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Aims. We explore the effects of an outer stably stratified coronal envelope on rotating turbulent convection, differential rotation, and large-scale dynamo action in spherical wedge models of the Sun. Methods. We solve the compressible magnetohydrodynamic equations in a two-layer model with unstable stratification below the surface, representing the convection zone, and a stably stratified coronal envelope above. The interface represents a free surface. We compare our model to models that have no coronal envelope. Results. The presence of a coronal envelope is found to modify the Reynolds stress and the Lambda effect resulting in a weaker and non-cylindrical differential rotation. This is related to the reduced latitudinal temperature variations that are caused by and dependent on the angular velocity. Some simulations develop a near-surface shear layer that we can relate to a sign change in the meridional Reynolds stress term in the thermal wind balance equation. Furthermore, the presence of a free surface changes the magnetic field evolution since the toroidal field is concentrated closer to the surface. In all simulations, however, the migration direction of the mean magnetic field can be explained by the Parker-Yoshimura rule, which is consistent with earlier findings. Conclusions. A realistic treatment of the upper boundary in spherical dynamo simulations is crucial for the dynamics of the flow and magnetic field evolution.

Ämnesord

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Nyckelord

magnetohydrodynamics (MHD)
turbulence
dynamo
Sun: magnetic fields
Sun: rotation
Sun: activity

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy