SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-209279"
 

Sökning: id:"swepub:oai:DiVA.org:kth-209279" > Charge separation a...

Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-delta and ion-doping ceria heterostructure material for new generation fuel cell

Zhu, Bin (författare)
KTH,Kraft- och värmeteknologi,Hubei University, China
Wang, Baoyuan (författare)
Wang, Yi (författare)
visa fler...
Raza, Rizwan (författare)
Tan, Wenyi (författare)
Kim, Jung-Sik (författare)
van Aken, Peter A. (författare)
Lund, Peter (författare)
visa färre...
 (creator_code:org_t)
Elsevier, 2017
2017
Engelska.
Ingår i: Nano Energy. - : Elsevier. - 2211-2855 .- 2211-3282. ; 37, s. 195-202
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Functionalities in heterostructure oxide material interfaces are an emerging subject resulting in extraordinary material properties such as great enhancement in the ionic conductivity in a heterostructure between a semiconductor SrTiO3 and an ionic conductor YSZ (yttrium stabilized zirconia), which can be expected to have a profound effect in oxygen ion conductors and solid oxide fuel cells [1-4]. Hereby we report a semiconductorionic heterostructure La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and Sm-Ca co-doped ceria (SCDC) material possessing unique properties for new generation fuel cells using semiconductor-ionic heterostructure composite materials. The LSCF-SCDC system contains both ionic and electronic conductivities, above 0.1 S/cm, but used as the electrolyte for the fuel cell it has displayed promising performance in terms of OCV (above 1.0 V) and enhanced power density (ca. 1000 mW/cm(2) at 550 degrees C). Such high electronic conduction in the electrolyte membrane does not cause any short-circuiting problem in the device, instead delivering enhanced power output. Thus, the study of the charge separation/transport and electron blocking mechanism is crucial and can play a vital role in understanding the resulting physical properties and physics of the materials and device. With atomic level resolution ARM 200CF microscope equipped with the electron energy-loss spectroscopy (EELS) analysis, we can characterize more accurately the buried interface between the LSCF and SCDC further reveal the properties and distribution of charge carriers in the heterostructures. This phenomenon constrains the carrier mobility and determines the charge separation and devices' fundamental working mechanism; continued exploration of this frontier can fulfill a next generation fuel cell based on the new concept of semiconductor-ionic fuel cells (SIFCs).

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology (hsv//eng)

Nyckelord

Fuel cell device
Semiconductor ionic fuel cell
Charge separation
ionic transport
Heterostructure
Composite
Semiconductor-ion material

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy