SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-223562"
 

Sökning: id:"swepub:oai:DiVA.org:kth-223562" > Two Problems in non...

Two Problems in non-linear PDE’s with Phase Transitions

Jonsson, Karl (författare)
KTH,Matematik (Avd.)
Shahgholian, Henrik (preses)
KTH,Matematik (Avd.)
Sjödin, Tomas (opponent)
KTH Matematik (Avd(creator_code:org_t)
ISBN 9789177296829
KTH Royal Institute of Technology, 2018
Engelska 35 s.
Serie: TRITA-SCI-FOU ; 2018:04
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • This thesis is in the field of non-linear partial differential equations (PDE), focusing on problems which show some type of phase-transition. A single phase Hele-Shaw flow models a Newtoninan fluid which is being injected in the space between two narrowly separated parallel planes. The time evolution of the space that the fluid occupies can be modelled by a semi-linear PDE. This is a problem within the field of free boundary problems. In the multi-phase problem we consider the time-evolution of a system of phases which interact according to the principle that the joint boundary which emerges when two phases meet is fixed for all future times. The problem is handled by introducing a parameterized equation which is regularized and penalized. The penalization is non-local in time and tracks the history of the system, penalizing the joint support of two different phases in space-time. The main result in the first paper is the existence theory of a weak solution to the parameterized equations in a Bochner space using the implicit function theorem. The family of solutions to the parameterized problem is uniformly bounded allowing us to extract a weakly convergent subsequence for the case when the penalization tends to infinity.The second problem deals with a parameterized highly oscillatory quasi-linear elliptic equation in divergence form. As the regularization parameter tends to zero the equation gets a jump in the conductivity which occur at the level set of a locally periodic function, the obstacle. As the oscillations in the problem data increases the solution to the equation experiences high frequency jumps in the conductivity, resulting in the corresponding solutions showing an effective global behaviour. The global behavior is related to the so called homogenized solution. We show that the parameterized equation has a weak solution in a Sobolev space and derive bounds on the solutions used in the analysis for the case when the regularization is lost. Surprisingly, the limiting problem in this case includes an extra term describing the interaction between the solution and the obstacle, not appearing in the case when obstacle is the zero level-set. The oscillatory nature of the problem makes standard numerical algorithms computationally expensive, since the global domain needs to be resolved on the micro scale. We develop a multi scale method for this problem based on the heterogeneous multiscale method (HMM) framework and using a finite element (FE) approach to capture the macroscopic variations of the solutions at a significantly lower cost. We numerically investigate the effect of the obstacle on the homogenized solution, finding empirical proof that certain choices of obstacles make the limiting problem have a form structurally different from that of the parameterized problem.

Ämnesord

NATURVETENSKAP  -- Matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics (hsv//eng)

Nyckelord

Conductivity jump
Free boundary problem
Quasilinear elliptic equation
Mathematical techniques
Nonlinear analysis
Free boundary
Free-boundary problems
Quasi-linear elliptic
Quasilinear elliptic equations
Hele-Shaw flow
non-local
implicit function theorem
Heterogeneous Multi Scale
HMM
Finite Element
FEM
FE
Mathematics
Matematik

Publikations- och innehållstyp

vet (ämneskategori)
lic (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Jonsson, Karl
Shahgholian, Hen ...
Sjödin, Tomas
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Matematik
Delar i serien
Av lärosätet
Kungliga Tekniska Högskolan

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy