SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:kth-24923"
 

Search: id:"swepub:oai:DiVA.org:kth-24923" > Temporal Gravity Va...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Temporal Gravity Variations near Shrinking Vatnajokull Ice Cap, Iceland

Jacoby, Wolfgang R. (author)
Hartmann, Oliver (author)
Wallner, Herbert (author)
show more...
Smilde, Peter L. (author)
Buerger, Stefan (author)
Sjöberg, Lars E. (author)
KTH,Geodesi
Erlingsson, Sigurdur (author)
Wolf, Detlef (author)
Klemann, Volker (author)
Sasgen, Ingo (author)
show less...
 (creator_code:org_t)
2009-06-10
2009
English.
In: Pure and Applied Geophysics. - : Springer Science and Business Media LLC. - 0033-4553 .- 1420-9136. ; 166:8-9, s. 1283-1302
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Repeated gravity measurements were carried out from 1991 until 1999 at sites SE of Vatnajokull, Iceland, to estimate the mass flow and deformation accompanying the shrinking of the ice cap. Published GPS data show an uplift of about 13 +/- A 5 mm/a near the ice margin. A gravity decrease of -2 +/- A 1 mu Gal/a relative to the Hofn base station, was observed for the same sites. Control measurements at the Hofn station showed a gravity decrease of -2 +/- A 0.5 A mu Gal/a relative to the station RVIK 5473 at Reykjavik (about 250 km from Hofn). This is compatible, as a Bouguer effect, with a 10 +/- A 3 mm/a uplift rate of the IGS point at Hofn and an uplift rate of similar to 20 mm/a near the ice margin. Although the derived gravity change rates at individual sites have large uncertainties, the ensemble of the rates varies systematically and significantly with distance from the ice. The relationship between gravity and elevation changes and the shrinking ice mass is modelled as response to the loading history. The GPS data can be explained by 1-D modelling (i.e., an earth model with a 15-km thick elastic lithosphere and a 7 center dot 10(17) Pa center dot s asthenosphere viscosity), but not the gravity data. Based on 2-D modelling, the gravity data favour a low-viscosity plume in the form of a cylinder of 80 km radius and 10(17) to 10(18) Pa center dot s viscosity below a 6 km-thick elastic lid, embedded in a layered PREM-type earth, although the elevation data are less well explained by this model. Strain-porosity-hydrology effects are likely to enhance the magnitude of the gravity changes, but need verification by drilling. More accurate data may resolve the discrepancies or suggest improved models.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences (hsv//eng)

Keyword

Iceland
temporal gravity change
GPS
plume
viscosity
Earth sciences
Geovetenskap

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view