SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:kth-252393"
 

Search: id:"swepub:oai:DiVA.org:kth-252393" > Coulomb blockade in...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir

Brotons-Gisbert, Mauro (author)
Heriot Watt Univ, Inst Photon & Quantum Sci, SUPA, Edinburgh, Midlothian, Scotland.
Branny, Artur (author)
KTH,Tillämpad fysik
Kumar, Santosh (author)
Heriot Watt Univ, Inst Photon & Quantum Sci, SUPA, Edinburgh, Midlothian, Scotland.;Indian Inst Technol, Goa GEC Campus, Ponda, Goa, India.
show more...
Picard, Raphael (author)
Heriot Watt Univ, Inst Photon & Quantum Sci, SUPA, Edinburgh, Midlothian, Scotland.
Proux, Raphael (author)
Heriot Watt Univ, Inst Photon & Quantum Sci, SUPA, Edinburgh, Midlothian, Scotland.
Gray, Mason (author)
Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA.
Burch, Kenneth S. (author)
Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA.
Watanabe, Kenji (author)
Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan.
Taniguchi, Takashi (author)
Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan.
Gerardot, Brian D. (author)
Heriot Watt Univ, Inst Photon & Quantum Sci, SUPA, Edinburgh, Midlothian, Scotland.
show less...
Heriot Watt Univ, Inst Photon & Quantum Sci, SUPA, Edinburgh, Midlothian, Scotland Tillämpad fysik (creator_code:org_t)
2019-03-11
2019
English.
In: Nature Nanotechnology. - : NATURE PUBLISHING GROUP. - 1748-3387 .- 1748-3395. ; 14:5, s. 442-446
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Gate-tunable quantum-mechanical tunnelling of particles between a quantum confined state and a nearby Fermi reservoir of delocalized states has underpinned many advances in spintronics and solid-state quantum optics. The prototypical example is a semiconductor quantum dot separated from a gated contact by a tunnel barrier. This enables Coulomb blockade, the phenomenon whereby electrons or holes can be loaded one-by-one into a quantum dot(1,2). Depending on the tunnel-coupling strength(3,4), this capability facilitates single spin quantum bits(1,2,5) or coherent many-body interactions between the confined spin and the Fermi reservoirs(6,7). Van der Waals (vdW) heterostructures, in which a wide range of unique atomic layers can easily be combined, offer novel prospects to engineer coherent quantum confined spins(8,9), tunnel barriers down to the atomic limit(10) or a Fermi reservoir beyond the conventional flat density of states(11). However, gate-control of vdW nanostructuresu(12-16) at the single particle level is needed to unlock their potential. Here we report Coulomb blockade in a vdW heterostructure consisting of a transition metal dichalcogenide quantum dot coupled to a graphene contact through an atomically thin hexagonal boron nitride (hBN) tunnel barrier. Thanks to a tunable Fermi reservoir, we can deterministically load either a single electron or a single hole into the quantum dot. We observe hybrid excitons, composed of localized quantum dot states and delocalized continuum states, arising from ultra-strong spin-conserving tunnel coupling through the atomically thin tunnel barrier. Probing the charged excitons in applied magnetic fields, we observe large gyromagnetic ratios (similar to 8). Our results establish a foundation for engineering next-generation devices to investigate either novel regimes of Kondo physics or isolated quantum bits in a vdW heterostructure platform.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view