SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-263434"
 

Sökning: id:"swepub:oai:DiVA.org:kth-263434" > Optimisation of def...

Optimisation of deformation properties in as-cast copper by microstructural engineering. Part II. Mechanical properties

Chen, Kaixuan (författare)
KTH,Materialvetenskap,School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
Pan, S. (författare)
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
Chen, X. (författare)
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
visa fler...
Wang, Z. (författare)
School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
Sandström, Rolf (författare)
KTH,Materialteknologi
visa färre...
 (creator_code:org_t)
Elsevier Ltd, 2020
2020
Engelska.
Ingår i: Journal of Alloys and Compounds. - : Elsevier Ltd. - 0925-8388 .- 1873-4669. ; 812
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The microstructure evolution in the as-cast pure Cu and Cu-(1.0–3.0)Fe-0.5Co and Cu-1.5Fe-0.1Sn (wt. %) alloys was characterised in the previous work. Herein, the plastic deformation characteristics were examined by uniaxial tensile tests at room temperature. Along with the microstructure evolution, the yield strength increased with increasing Fe content and reached a peak value at 1.5 wt % Fe, but thereafter decreased with the further addition of Fe in the Cu–Fe–Co alloys. Nevertheless, the tensile strength and elongation synchronously improve with increasing Fe content. In particular, the Cu-1.5Fe-0.1Sn alloy achieved the optimal strength–ductility combination. In terms of the strengthening mechanism, the (Fe, Co)- or (Fe, Sn)-doped copper encouraged impediment, trapping, and storage of dislocations by the iron-rich nanoparticles and grain boundaries, which enhanced the strength and sustained the work hardening and elongation. The evolution of mechanical properties under an alloying effect was quantitatively described by the strengthening models. The results indicate that the optimum balance between strength and ductility was achieved by designing a microstructure containing fine grains, intragranular smaller spherical nanoparticles, and a minor solute element with higher misfit and higher growth restriction effect. The necessities for engineering a microstructure to achieve simultaneously strong and ductile bulk metals were discussed.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)

Nyckelord

Casting
Copper
Iron-rich nanoparticle
Mechanical behaviour
Microstructure design
Cobalt alloys
Copper alloys
Ductility
Grain boundaries
Microstructure
Nanoparticles
Strain hardening
Strengthening (metal)
Tensile strength
Tensile testing
Ternary alloys
Tin alloys
Deformation Characteristics
Iron rich
Micro-structure evolutions
Microstructural engineering
Strength and ductilities
Strengthening mechanisms
Iron alloys
Metallurgical process science
Metallurgisk processvetenskap

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Chen, Kaixuan
Pan, S.
Chen, X.
Wang, Z.
Sandström, Rolf
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Materialteknik
och Metallurgi och m ...
Artiklar i publikationen
Journal of Alloy ...
Av lärosätet
Kungliga Tekniska Högskolan

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy