SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-268450"
 

Sökning: id:"swepub:oai:DiVA.org:kth-268450" > Mode merging design...

Mode merging design method for non-locally reacting liner with porous bulk materials

Qiu, X. (författare)
Du, L. (författare)
Jing, X. (författare)
visa fler...
Sun, X. (författare)
Åbom, Mats, 1954- (författare)
KTH,Marcus Wallenberg Laboratoriet MWL
Bodén, Hans, 1954- (författare)
KTH,Marcus Wallenberg Laboratoriet MWL
visa färre...
 (creator_code:org_t)
2019-05-18
2019
Engelska.
Ingår i: 25th AIAA/CEAS Aeroacoustics Conference, 2019. - Reston, Virginia : [publishername] American Institute of Aeronautics and Astronautics Inc, AIAA. - 9781624105883
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • The Mode Merging Design Method (MMDM), a theoretical design method further developed based on the Cremer concept, for non-locally reacting liners with porous materials is first proposed and established. The acoustic properties of such non-locally reacting liners are determined by the combined action of porous materials in the chamber and perforated plate adjacent to porous backing and grazing flow, which are described by the Delany & Bazley (DB)-like models and the combined Guess & Kirby-Cummings (Guess-KC) impedance model in this study, respectively. According to the structure characteristics of bulk liner, the porous chamber depth Lc and flow resistivity σ, are selected to be optimized to maximize the sound attenuation at a target frequency when a single circumferential mode is incident. In the spirit of the mode merging theory, the eigen equation and the branch point equation for this physical problem are derived, from which the merging double eigenvalue/mode can be solved, in turn, the optimum chamber depth Lc and flow resistivity σ can be simultaneously determined, which can produce theoretically maximum sound attenuation. Then, a Finite Element (FE) sound propagation model is established to validate the liner design of theoretical optimization by MMDM. The accuracies of the eigen-analysis method, the DB model, the Guess-KC model and the FE model are validated through several benchmark cases. Further, the MMDM is applied in four design cases of bulk liners with finite length, and the results indicate that the MMDM can accurately aim at a given condition of grazing flow Ma, circumferential mode order m and target frequency f to effectively optimize the structural parameters for actual bulk liners. Finally, an optimality analysis performed through two concrete cases demonstrates that the MMDM can avoid locally optimal solution and successfully find optimal structures for an infinite non-locally reacting liner, thus producing the maximum sound attenuation at target frequency.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Farkostteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Vehicle Engineering (hsv//eng)

Nyckelord

Acoustic impedance
Acoustic wave propagation
Aeroacoustics
Eigenvalues and eigenfunctions
Merging
Perforated plates
Porous materials
Structural optimization
Circumferential modes
Impedance modeling
Optimal structures
Optimality analysis
Structural parameter
Structure characteristic
Target frequencies
Theoretical design
Structural design

Publikations- och innehållstyp

ref (ämneskategori)
kon (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy