SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-274116"
 

Sökning: id:"swepub:oai:DiVA.org:kth-274116" > Scaling Deep Learni...

Scaling Deep Learning Models for Large Spatial Time-Series Forecasting :

Abbas, Zainab (författare)
KTH,Programvaruteknik och datorsystem, SCS
Ivarsson, Jón Reginbald (författare)
KTH
Al-Shishtawy, A. (författare)
visa fler...
Vlassov, Vladimir (författare)
KTH,Programvaruteknik och datorsystem, SCS
visa färre...
 (creator_code:org_t)
Institute of Electrical and Electronics Engineers Inc. 2019
2019
Engelska.
Ingår i: Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019. - : Institute of Electrical and Electronics Engineers Inc.. - 9781728108582 ; , s. 1587-1594
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • Neural networks are used for different machine learning tasks, such as spatial time-series forecasting. Accurate modelling of a large and complex system requires large datasets to train a deep neural network that causes a challenge of scale as training the network and serving the model are computationally and memory intensive. One example of a complex system that produces a large number of spatial time-series is a large road sensor infrastructure deployed for traffic monitoring. The goal of this work is twofold: 1) To model large amount of spatial time-series from road sensors; 2) To address the scalability problem in a real-life task of large-scale road traffic prediction which is an important part of an Intelligent Transportation System.We propose a partitioning technique to tackle the scalability problem that enables parallelism in both training and prediction: 1) We represent the sensor system as a directed weighted graph based on the road structure, which reflects dependencies between sensor readings, and weighted by sensor readings and inter-sensor distances; 2) We propose an algorithm to automatically partition the graph taking into account dependencies between spatial time-series from sensors; 3) We use the generated sensor graph partitions to train a prediction model per partition. Our experimental results on traffic density prediction using Long Short-Term Memory (LSTM) Neural Networks show that the partitioning-based models take 2x, if run sequentially, and 12x, if run in parallel, less training time, and 20x less prediction time compared to the unpartitioned model of the entire road infrastructure. The partitioning-based models take 100x less total sequential training time compared to single sensor models, i.e., one model per sensor. Furthermore, the partitioning-based models have 2x less prediction error (RMSE) compared to both the single sensor models and the entire road model. 

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Nyckelord

deep learning
LSTM
spatial time-series
Complex networks
Deep neural networks
Directed graphs
Forecasting
Graph algorithms
Graph structures
Graphic methods
Intelligent systems
Large dataset
Learning systems
Roads and streets
Scalability
Scales (weighing instruments)
Time series
Traffic control
Intelligent transportation
Partitioning techniques
Road infrastructures
Scalability problems
Sensor infrastructure
Time series forecasting
Traffic monitoring
Long short-term memory

Publikations- och innehållstyp

ref (ämneskategori)
kon (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy