SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-284273"
 

Sökning: id:"swepub:oai:DiVA.org:kth-284273" > Modeling confined d...

Modeling confined ductile fracture - A void-growth and coalescence approach

Linder, David (författare)
KTH,Materialvetenskap
Yan, Jia-Yi (författare)
Thermocalc Software AB, Stockholm, Sweden.;Questek Europe AB, Stockholm, Sweden.
Walbrühl, Martin (författare)
KTH,Materialvetenskap,Questek Europe AB, Stockholm, Sweden.
visa fler...
Ågren, John (författare)
KTH,Materialvetenskap
Borgenstam, Annika (författare)
KTH,Materialvetenskap
visa färre...
 (creator_code:org_t)
Elsevier BV, 2020
2020
Engelska.
Ingår i: International Journal of Solids and Structures. - : Elsevier BV. - 0020-7683 .- 1879-2146. ; 202, s. 454-462
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • In a composite material a soft, ductile matrix can be confined by a hard, brittle phase, altering its deformation and fracture behavior. Increasing confinement leads to embrittlement of the matrix and, in turn, also the composite. From a materials design perspective, it is usually desired to avoid brittle fracture without compromising the hardness of the material. Understanding confined ductile fracture is therefore critical for modeling the mechanical response of composite materials with fine microstructure. The present work is focused on confined ductile fracture of a thin ductile film, with elasto-plastic power-law hardening behavior, sandwiched between ideal linear elastic substrates. Fracture of the ductile layer is modeled by growth and coalescence of prescribed voids in 2D. Influences of material properties, initial void volume fraction, geometric constraints and elastic mismatch are investigated. The results show a loss of ductility with decreasing film thickness that is accompanied by a severe decrease in fracture initiation toughness as well as an increased stress at the interface. The influence of materials properties is significant in all cases while the effect of initial void volume fraction is comparatively less critical for highly confined materials than for bulk materials. Increasing confinement also results in increasing normal stress at the phase interface, promoting interface decohesion prior to ductile fracture of the film. The present approach and results are a step towards more detailed prediction of composite fracture toughness and crack-growth resistance.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Teknisk mekanik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Applied Mechanics (hsv//eng)

Nyckelord

Confined ductile fracture
Void-growth and coalescence
Composite material
Fracture toughness
Finite element modeling

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy