SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-292526"
 

Sökning: id:"swepub:oai:DiVA.org:kth-292526" > An interface captur...

An interface capturing method for liquid-gas flows at low-Mach number

Dalla Barba, Federico (författare)
CISAS, University of Padova, Padova, Italy
Scapin, Nicolo (författare)
KTH,Strömningsmekanik och Teknisk Akustik,SeRC - Swedish e-Science Research Centre,Linné Flow Center, FLOW
Demou, Andreas (författare)
KTH,Skolan för teknikvetenskap (SCI),demou@kth.se
visa fler...
Rosti, Marco E. (författare)
Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
Picano, Francesco (författare)
Department of Industrial Engineering & CISAS, University of Padova, Padova, Italy
Brandt, Luca (författare)
KTH,Linné Flow Center, FLOW,SeRC - Swedish e-Science Research Centre,Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
visa färre...
 (creator_code:org_t)
Elsevier Ltd, 2021
2021
Engelska.
Ingår i: Computers & Fluids. - : Elsevier Ltd. - 0045-7930 .- 1879-0747. ; 216
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Multiphase, compressible and viscous flows are of crucial importance in a wide range of scientific and engineering problems. Despite the large effort paid in the last decades to develop accurate and efficient numerical techniques to address this kind of problems, current models need to be further improved to address realistic applications. In this context, we propose a numerical approach to the simulation of multiphase, viscous flows where a compressible and an incompressible phase interact in the low-Mach number regime. In this frame, acoustics are neglected but large density variations of the compressible phase can be accounted for as well as heat transfer, convection and diffusion processes. The problem is addressed in a fully Eulerian framework exploiting a low-Mach number asymptotic expansion of the Navier-Stokes equations. A Volume of Fluid approach (VOF) is used to capture the liquid-gas interface, built on top of a massive parallel solver, second order accurate both in time and space. The second-order-pressure term is treated implicitly and the resulting pressure equation is solved with the eigenexpansion method employing a robust and novel formulation. We provide a detailed and complete description of the theoretical approach together with information about the numerical technique and implementation details. Results of benchmarking tests are provided for five different test cases. 

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Nyckelord

Compressible multi-phase flows
Low-Mach number asymptotic expansions
Pressure-correction methods
Volume-of-Fluid method
Aerodynamics
Heat transfer
Incompressible flow
Liquefied gases
Navier Stokes equations
Numerical methods
Phase interfaces
Viscous flow
Asymptotic expansion
Convection and diffusion
Engineering problems
Interface-capturing method
Liquid gas interface
Numerical techniques
Realistic applications
Theoretical approach
Mach number

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy