SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-324372"
 

Sökning: id:"swepub:oai:DiVA.org:kth-324372" > Elastic properties ...

Elastic properties of body-centered cubic iron in Earth's inner core

Belonoshko, Anatoly (författare)
KTH,Kondenserade materiens teori,Royal Inst Technol KTH, AlbaNova Univ Ctr, Dept Phys, Condensed Matter Theory, S-10691 Stockholm, Sweden.;Univ S Florida, Dept Phys, Tampa, FL 33620 USA.
Simak, Sergei I, 1967- (författare)
Linköpings universitet,Uppsala universitet,Materialteori,Linköping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linköping, Sweden.,Teoretisk Fysik,Tekniska fakulteten,Uppsala Univ, Sweden
Olovsson, Weine (författare)
Linköpings universitet,Teoretisk Fysik,Tekniska fakulteten
visa fler...
Vekilova, Olga Yu. (författare)
Stockholms universitet,Institutionen för material- och miljökemi (MMK),Stockholm Univ, Dept Mat & Environm Chem, Stockholm, Sweden.
visa färre...
 (creator_code:org_t)
American Physical Society (APS), 2022
2022
Engelska.
Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 105:18
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The solid Earth's inner core (IC) is a sphere with a radius of about 1300 km in the center of the Earth. The information about the IC comes mainly from seismic studies. The composition of the IC is obtained by matching the seismic data and properties of candidate phases subjected to high pressure (P) and temperature (T). The close match between the density of the IC and iron suggests that the main constituent of the IC is iron. However, the stable phase of iron is still a subject of debate. One such iron phase, the body-centered cubic phase (bcc), is dynamically unstable at pressures of the IC (330-364 GPa) and low T but gets stabilized at high T characteristic of the IC (5000-7000 K). So far, ab initio molecular dynamics (AIMD) studies attempted to compute the bcc elastic properties for a small (order of 102) number of atoms. The mechanism of the bcc stabilization cannot be enabled in such cells and that has led to erroneous results. Here we apply AIMD to compute elastic moduli and sound velocities of the Fe bcc phase for a 2000 Fe atom computational cell, which is a cell of unprecedented size for ab initio calculations of iron. Unlike in previous ab initio calculations, both the longitudinal and the shear sound velocities of the Fe bcc phase closely match the properties of the IC material at P = 360 GPa and T = 6600 K, likely the PT conditions in the IC. The calculated density of the bcc iron at these PT conditions is just 3% higher than the density of the IC material according to the Preliminary Earth Model. This suggests that the widely assumed amount of light elements in the IC may need a reconsideration. The anisotropy of the bcc phase is an exact match to the most recent seismic studies. 

Ämnesord

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Nyckelord

Acoustic wave velocity
Atoms
Calculations
Elasticity
Integrated circuits
Molecular dynamics
Seismology
Shear flow
Ab initio calculations
Ab initio molecular dynamics
Body-centered-cubic phase
Condition
Core material
Earth inner core
Elastic properties
Inner core
Property
Seismic studies
Iron

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy