SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-327184"
 

Sökning: id:"swepub:oai:DiVA.org:kth-327184" > Uncertainty quantif...

Uncertainty quantification of the premixed combustion characteristics of NH3/H2/N2 fuel blends

Soyler, Israfil (författare)
Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England.
Zhang, Kai (författare)
KTH,Processteknologi
Duwig, Christophe (författare)
KTH,Processteknologi
visa fler...
Jiang, Xi (författare)
Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England.
Karimi, Nader (författare)
Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England.
visa färre...
Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England Processteknologi (creator_code:org_t)
Elsevier BV, 2023
2023
Engelska.
Ingår i: International journal of hydrogen energy. - : Elsevier BV. - 0360-3199 .- 1879-3487. ; 48:38, s. 14477-14491
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Green ammonia is a candidate fuel to decarbonise shipping and other industries. However, ammonia features a lower reactivity compared to conventional fuels and is therefore difficult to burn. To resolve this issue, thermo-catalytic cracking of ammonia using waste heat is often employed to produce NH3/H2/N2 blends as fuel. However, on-site operational variations in this process can become sources of uncertainty in the fuel composition, causing randomness of the flame's physicochemical properties and challenging flame stability. In the present work, a surrogate model is built using the polynomial chaos expansion (PCE) method to investigate the impact of fuel composition variability on combustion characteristics at different operating conditions. Impacts of 1.5% deviation in the fuel composition on the flame properties for different initial pressures (Pi) and unburnt fuel temperatures (Tu) are investigated for a wide range of equivalence ratios covering lean and rich mixtures. The uncertainty effects defined by the coefficient of variation (COV) fluctuate for equivalence ratios greater than 1.1, while no fluctuation is observed in COV for near stoichiometric combustion conditions. It is shown that H2 variation in the fuel blend has the strongest effect (over 80%) on the uncertainty of all investigated physicochemical properties of the flame. The least affected property is the adiabatic flame temperature with variations of about 2.5% in richer fuel conditions. The results further show that preheating of the reactants can significantly reduce the COV of laminar flame speed. The consequences of these uncertainties upon different combustion technologies are then discussed and it is argued that moderate and intense low oxygen dilution (MILD) and colourless distributed combustion (CDC) technology may remain resilient.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Nyckelord

Uncertainty quantification
Data -driven modelling
Flame physicochemical properties
Ammonia fuel blends
Ammonia combustion

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Soyler, Israfil
Zhang, Kai
Duwig, Christoph ...
Jiang, Xi
Karimi, Nader
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Maskinteknik
och Energiteknik
Artiklar i publikationen
International jo ...
Av lärosätet
Kungliga Tekniska Högskolan

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy