SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:kth-335365"
 

Search: id:"swepub:oai:DiVA.org:kth-335365" > Study of Water Inte...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Study of Water Interaction with UO2, U2O5, and UO3 : Tracking the Unexpected Reduction of Uranium Cations and Characterization of Surface-Bound Hydroxyls

El Jamal, Ghada (author)
KTH,Tillämpad fysikalisk kemi
Gouder, Thomas (author)
European Commission, Joint Research Centre, Postfach 2340, DE-76215 Karlsruhe, Germany, Postfach 2340
Eloirdi, Rachel (author)
European Commission, Joint Research Centre, Postfach 2340, DE-76215 Karlsruhe, Germany, Postfach 2340
show more...
Idriss, Hicham (author)
European Commission, Joint Research Centre, Postfach 2340, DE-76215 Karlsruhe, Germany, Postfach 2340; Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), DE-76215 Karlsruhe, Germany
Jonsson, Mats, 1967- (author)
KTH,Tillämpad fysikalisk kemi
show less...
 (creator_code:org_t)
American Chemical Society (ACS), 2023
2023
English.
In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 127:29, s. 14222-14231
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The interaction of water with the surfaces of metal oxides is important to many fields of research, extending from nuclear science to catalysis to energy and biomedical materials. One intriguing phenomenon is the observation that, for a few oxides, water seems to reduce (not oxidize) the oxide substrate. In this work, ultraviolet photoelectron spectroscopy (UPS) has been used to study the reactions of H2O with prototype oxide nuclear fuels: UO2, U2O5, and UO3. On UO2, water adsorbs largely in a molecular state. On U2O5, water partially dissociates at −60 °C, thus forming surface −OH groups, and a fraction of the uranium cations are reduced from U5+ to U4+. On UO3, a similar reduction process is seen (reduction of a fraction of uranium cations from U6+ to U5+), albeit less pronounced. The chemisorbed H2O and −OH states via their molecular orbitals (MOs), 1b2, 3a1, and 1b1 for H2O and 1σ and 1π for −OH, were further analyzed. The 3a1-1b1 binding energy difference (ΔE) was taken as a measure of the bond strength. It was found to be larger on UO2 and U2O5 (2.9-3.0 eV) than on UO3 (2.2 eV). The charge state of the surface hydroxyl was found to be related to the 1π /1σ intensity ratio, from which, and in conjunction with the created U 5f states, electron transfer to the conduction band under UPS collection was facilitated by the hole trapping capacity of surface −OH groups, at least in the case of UO3. An energy band diagram is constructed that may explain the redox process observed on UO3 under UV photon excitation.

Subject headings

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)
NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)

Keyword

Band diagram
Binding energy Electrochemical impedance spectroscopy
Molecular orbitals
Nuclear fuels
Photoelectrons
Photons
Positive ions
Uranium

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view