SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-347190"
 

Sökning: id:"swepub:oai:DiVA.org:kth-347190" > Fluid and kinetic s...

Fluid and kinetic studies of tokamak disruptions using Bayesian optimization

Ekmark, I. (författare)
Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden.
Hoppe, Mathias (författare)
KTH,Elektromagnetism och fusionsfysik
Fulop, T. (författare)
Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden.
visa fler...
Jansson, P. (författare)
Chalmers Univ Technol, Dept Comp Sci & Engn, SE-41296 Gothenburg, Sweden.;Univ Gothenburg, SE-41296 Gothenburg, Sweden.
Antonsson, L. (författare)
Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden.
Vallhagen, O. (författare)
Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden.
Pusztai, I. (författare)
Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden.
visa färre...
Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden Elektromagnetism och fusionsfysik (creator_code:org_t)
Cambridge University Press (CUP), 2024
2024
Engelska.
Ingår i: Journal of Plasma Physics. - : Cambridge University Press (CUP). - 0022-3778 .- 1469-7807. ; 90:3
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • When simulating runaway electron dynamics in tokamak disruptions, fluid models with lower numerical cost are often preferred to more accurate kinetic models. The aim of this work is to compare fluid and kinetic simulations of a large variety of different disruption scenarios in ITER. We consider both non-activated and activated scenarios; for the latter, we derive and implement kinetic sources for the Compton scattering and tritium beta decay runaway electron generation mechanisms in our simulation tool Dream (Hoppe et al., Comput. Phys. Commun., vol. 268, 2021, 108098). To achieve a diverse set of disruption scenarios, Bayesian optimization is used to explore a range of massive material injection densities for deuterium and neon. The cost function is designed to distinguish between successful and unsuccessful disruption mitigation based on the runaway current, current quench time and transported fraction of the heat loss. In the non-activated scenarios, we find that fluid and kinetic disruption simulations can have significantly different runaway electron dynamics, due to an overestimation of the runaway seed by the fluid model. The primary cause of this is that the fluid hot-tail generation model neglects superthermal electron transport losses during the thermal quench. In the activated scenarios, the fluid and kinetic models give similar predictions, which can be explained by the significant influence of the activated sources on the runaway dynamics and the seed.

Ämnesord

NATURVETENSKAP  -- Fysik -- Fusion, plasma och rymdfysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Fusion, Plasma and Space Physics (hsv//eng)

Nyckelord

fusion plasma
runaway electrons
plasma simulation

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy