SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:liu-112353"
 

Sökning: id:"swepub:oai:DiVA.org:liu-112353" > Control of exciton ...

Control of exciton fine-structure splitting in geometrically engineered self-assembled InAs/GaAs quantum molecular structures

Fillipov, Stanislav (författare)
Linköpings universitet,Funktionella elektroniska material,Tekniska högskolan
Puttisong, Yuttapoom (författare)
Linköpings universitet,Funktionella elektroniska material,Tekniska högskolan
Huang, Yuqing (författare)
Linköpings universitet,Funktionella elektroniska material,Tekniska högskolan
visa fler...
Buyanova, Irina (författare)
Linköpings universitet,Funktionella elektroniska material,Tekniska högskolan
Suraprapapich, Suwaree (författare)
Department of Electrical and Computer Engineering, University of California, La Jolla, California, USA
Tu, C. W. (författare)
Department of Electrical and Computer Engineering, University of California, La Jolla, California, USA
Chen, Weimin (författare)
Linköpings universitet,Funktionella elektroniska material,Tekniska högskolan
visa färre...
 (creator_code:org_t)
Engelska.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Fine-structure splitting (FSS) of excitons in semiconductor nanostructures is a key parameter that has significant implications in photon entanglement and polarization conversion between electron spins and photons, relevant to quantum information technology and spintronics. Here, we investigate exciton FSS in self-organized InAs/GaAs quantum molecular structures (QMSs) including laterally-aligned double quantum dots (DQDs), quantum-dot clusters (QCs) and quantum rings (QRs), by employing polarization-resolved micro-photoluminescence spectroscopy. We find a clear trend in FSS between the studied QMSs depending on their geometric arrangements, from a large FSS in the DQDs to a smaller FSS in the QCs and QRs with an overall higher geometric symmetry. This trend is accompanied by a corresponding difference in the optical polarization directions of the excitons between these QMSs, namely, the bright-exciton lines are linearly polarized preferably along or perpendicular to the [11̅0] crystallographic axis in the DQDs that also defines the alignment of the two constituting QDs, whereas in the QCs and QRs the polarization directions are randomly oriented. We attribute the observed trends in the FSS to a significant reduction of the anisotropic strain field in the high symmetry QCRs and QCs as compared with the low-symmetry  DQDs. Our work demonstrates that FSS can be effectively controlled by geometric engineering of the QMSs, capable of reducing FSS even in a strained QD system to a limit similar to strain-free QDs. This approach provides a new pathway in obtaining high-symmetry quantum emitters desirable for realizing photon entanglement and spintronic devices based on such nanostructures, without special requirements for lattice-matched materials combinations, specific substrate orientations and nanolithography.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Publikations- och innehållstyp

vet (ämneskategori)
ovr (ämneskategori)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy