SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:liu-142836"
 

Sökning: id:"swepub:oai:DiVA.org:liu-142836" > Highly porous scaff...

Highly porous scaffolds of PEDOT:PSS for bone tissue engineering

Guex, Anne Geraldine (författare)
Imperial Coll London, England
Puetzer, Jennifer L. (författare)
Imperial Coll London, England
Armgarth, Astrid (författare)
Imperial Coll London, England
visa fler...
Littmann, Elena (författare)
Imperial Coll London, England
Stavrinidou, Eleni (författare)
Linköpings universitet,Fysik och elektroteknik,Tekniska fakulteten,Imperial Coll London, England
Giannelis, Emmanuel P. (författare)
Cornell University, NY 14853 USA
Malliaras, George G. (författare)
Ecole National Super Mines, France
Stevens, Molly M. (författare)
Imperial Coll London, England
visa färre...
 (creator_code:org_t)
ELSEVIER SCI LTD, 2017
2017
Engelska.
Ingår i: Acta Biomaterialia. - : ELSEVIER SCI LTD. - 1742-7061 .- 1878-7568. ; 62, s. 91-101
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6 +/- 5.9 mu m and a total pore surface area of 7.72 +/- 1.7 m(2).g(-1). The electrical conductivity, based on I-V curves, was measured to be 140 mu S.cm(-1) with a reduced, but stable conductivity of 6.1 mu S.cm(-1) after 28 days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4 weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Statement of Significance Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold based on PEDOT:PSS, and provide evidence that this purely synthetic material is a promising candidate for bone tissue engineering. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Biomaterialvetenskap (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Biomaterials Science (hsv//eng)

Nyckelord

Bone tissue engineering; PEDOT:PSS; Conductive scaffolds; Porosity

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy