SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:liu-165726"
 

Sökning: id:"swepub:oai:DiVA.org:liu-165726" > Electrochemical wat...

Electrochemical water splitting based on metal oxide composite nanostructures

Tahira, Aneela, 1985- (författare)
Linköpings universitet,Fysik, elektroteknik och matematik,Tekniska fakulteten
Nur, Omer, Associate professor, 1959- (preses)
Linköpings universitet,Tekniska fakulteten,Fysik, elektroteknik och matematik
Willander, Magnus, Professor emeritus, 1948- (preses)
Linköpings universitet,Tekniska fakulteten,Fysik, elektroteknik och matematik
visa fler...
Turan, Rasit, Professor (opponent)
Department of Physics, Middle East Technical University, Ankara, Turkey
visa färre...
 (creator_code:org_t)
ISBN 9789179298661
Linköping : Linköping University Electronic Press, 2020
Engelska 64 s.
Serie: Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 2066
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • The occurrence of available energy reservoirs is decreasing steeply, therefore we are looking for an alternative and sustainable renewable energy resources. Among them, hydrogen is considered as green fuel with a high density of energy. In nature, hydrogen is not found in a free state and it is most likely present in the compound form for example H2O. Water covers almost 75% of the earth planet. To produce hydrogen from water, it requires an efficient catalyst. For this purpose, noble materials such as Pt, Ir, and Ru are efficient materials for water splitting. These precious catalysts are rare in nature, very costly, and are restricted from largescale applications. Therefore, search for a new earth-abundant and nonprecious materials is a hot spot area in the research today. Among the materials, nanomaterials are excellent candidates because of their potential properties for extended applications, particularly in energy systems. The fabrication of nanostructured materials with high specific surface area, fast charge transport, rich catalytic sites, and huge ion transport is the key challenge for turning nonprecious materials into precious catalytic materials. In this thesis, we have investigated nonprecious nanostructured materials and they are found to be efficient for electrochemical water splitting. These nanostructured materials include MoS2-TiO2, MoS2, TiO2, MoSx@NiO, NiO, nickeliron layered double hydroxide (NiFeLDH)/Co3O4, NiFeLDH, Co3O4, Cu-doped MoS2, Co3O4- CuO, CuO, etc. The composition, morphology, crystalline structure, and phase purities are investigated by a wide range of analytical instruments such as XPS, SEM, HRTEM, and XRD. The production of hydrogen/oxygen from water is obtained either in the acidic or alkaline media. Based on the functional characterization we believe that these newly produced nanostructured materials can be capitalized for the development of water splitting, batteries, and other energy-related devices.

Ämnesord

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Nyckelord

Composite metal oxides
hydrothermal method
water splitting
Tafel slope
stability
durability
alkaline media
acidic media

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy