SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:liu-179468"
 

Sökning: id:"swepub:oai:DiVA.org:liu-179468" > Effect of density d...

Effect of density dependence on coinfection dynamics

Andersson, Jonathan (författare)
Linköpings universitet,Analys och didaktik,Tekniska fakulteten
Ghersheen, Samia, 1985- (författare)
Linköpings universitet,Analys och didaktik,Tekniska fakulteten
Kozlov, Vladimir, 1954- (författare)
Linköpings universitet,Tekniska fakulteten,Analys och didaktik
visa fler...
Tkachev, Vladimir, 1963- (författare)
Linköpings universitet,Analys och didaktik,Tekniska fakulteten
Wennergren, Uno, 1957- (författare)
Linköpings universitet,Teoretisk Biologi,Tekniska fakulteten
visa färre...
 (creator_code:org_t)
2021-09-21
2021
Engelska.
Ingår i: Analysis and Mathematical Physics. - Basel, Switzerland : Birkhaeuser Science. - 1664-2368 .- 1664-235X. ; 11:4
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • In this paper we develop a compartmental model of SIR type (the abbreviation refers to the number of Susceptible, Infected and Recovered people) that models the population dynamics of two diseases that can coinfect. We discuss how the underlying dynamics depends on the carrying capacity K: from a simple dynamics to a more complex. This can also help in understanding the appearance of more complicated dynamics, for example, chaos and periodic oscillations, for large values of K. It is also presented that pathogens can invade in population and their invasion depends on the carrying capacity K which shows that the progression of disease in population depends on carrying capacity. More specifically, we establish all possible scenarios (the so-called transition diagrams) describing an evolution of an (always unique) locally stable equilibrium state (with only non-negative compartments) for fixed fundamental parameters (density independent transmission and vital rates) as a function of the carrying capacity K. An important implication of our results is the following important observation. Note that one can regard the value of K as the natural ‘size’ (the capacity) of a habitat. From this point of view, an isolation of individuals (the strategy which showed its efficiency for COVID-19 in various countries) into smaller resp. larger groups can be modelled by smaller resp. bigger values of K. Then we conclude that the infection dynamics becomes more complex for larger groups, as it fairly maybe expected for values of the reproduction number R0≈1. We show even more, that for the values R0>1 there are several (in fact four different) distinguished scenarios where the infection complexity (the number of nonzero infected classes) arises with growing K. Our approach is based on a bifurcation analysis which allows to generalize considerably the previous Lotka-Volterra model considered previously in Ghersheen et al. (Math Meth Appl Sci 42(8), 2019).

Ämnesord

NATURVETENSKAP  -- Biologi -- Immunologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Immunology (hsv//eng)
NATURVETENSKAP  -- Matematik -- Matematisk analys (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Mathematical Analysis (hsv//eng)
NATURVETENSKAP  -- Matematik -- Annan matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Other Mathematics (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy