SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:liu-182257"
 

Sökning: id:"swepub:oai:DiVA.org:liu-182257" > Superior low cycle ...

Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel

Cui, Luqing (författare)
Linköpings universitet,Konstruktionsmaterial,Tekniska fakulteten
Deng, Dunyong, 1989- (författare)
Linköpings universitet,Konstruktionsmaterial,Tekniska fakulteten
Jiang, Fuqing (författare)
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
visa fler...
Peng, Ru Lin, 1960- (författare)
Linköpings universitet,Konstruktionsmaterial,Tekniska fakulteten
Xin, Tongzheng (författare)
School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, Australia
Mousavian, Reza Taherzadeh (författare)
I-Form, Advanced Manufacturing Research Centre, Dublin City University, Dublin, Ireland
Yang, Zhiqing (författare)
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China; Ji Hua Laboratory, Foshan, China
Moverare, Johan, 1973- (författare)
Linköpings universitet,Konstruktionsmaterial,Tekniska fakulteten
visa färre...
 (creator_code:org_t)
Amsterdam, Netherlands : Elsevier, 2022
2022
Engelska.
Ingår i: Journal of Materials Science & Technology. - Amsterdam, Netherlands : Elsevier. - 1005-0302. ; 111, s. 268-278
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • We have investigated the low cycle fatigue (LCF) properties and the extent of strengthening in a dense additively manufactured stainless steel containing different volume fractions of cell structures but having all other microstructure characteristics the same. The samples were produced by laser powder bed fusion (L-PBF), and the concentration of cell structures was varied systematically by varying the annealing treatments. Load-controlled fatigue experiments performed on samples with a high fraction of cell structures reveal an up to 23 times increase in fatigue life compared to an essentially cell-free sample of the same grain configuration. Multiscale electron microscopy characterizations reveal that the cell structures serve as the soft barriers to the dislocation propagation and the partials are the main carrier for cyclic loading. The cell structures, stabilized by the segregated atoms and misorientation between the adjacent cells, are retained during the entire plastic deformation, hence, can continuously interact with dislocations, promote the formation of nanotwins, and provide massive 3D network obstacles to the dislocation motion. The compositional micro-segregation caused by the cellular solidification features serves as another non-negligible strengthening mechanism to dislocation motion. Specifically, the cell structures with a high density of dislocation debris also appear to act as dislocation nucleation sites, very much like coherent twin boundaries. This work indicates the potential of additive manufacturing to design energy absorbent alloys with high performance by tailoring the microstructure through the printing process.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Nyckelord

Additive manufacturing
316L stainless steel
fatigue behavior
cellular structure
nanotwins

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy