SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:liu-54726"
 

Sökning: id:"swepub:oai:DiVA.org:liu-54726" > Is Increased Normal...

Is Increased Normal White Matter Glutamate Concentration a Precursor of Gliosis and Disease Progression in Multiple Sclerosis?

Dahlqvist Leinhard, Olof (författare)
Linköpings universitet,Centrum för medicinsk bildvetenskap och visualisering, CMIV,Medicinsk radiofysik,Hälsouniversitetet
Jacek, J. (författare)
Aalto, Anne (författare)
Östergötlands Läns Landsting,Linköpings universitet,Medicinsk radiologi,Hälsouniversitetet,Bildmedicinskt centrum
visa fler...
Grönqvist, A. (författare)
Smedby, Örjan (författare)
Östergötlands Läns Landsting,Linköpings universitet,Medicinsk radiologi,Hälsouniversitetet,Bildmedicinskt centrum
Landtblom, Anne-Marie (författare)
Östergötlands Läns Landsting,Linköpings universitet,Institutionen för klinisk och experimentell medicin,Hälsouniversitetet,Neurologiska kliniken
Lundberg, Peter (författare)
Östergötlands Läns Landsting,Linköpings universitet,Medicinsk radiofysik,Hälsouniversitetet,Radiofysikavdelningen
visa färre...
 (creator_code:org_t)
Engelska.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Background: The multiple sclerosis (MS) severity scale (MSSS) is a new scoring procedure to clinically characterize the rate of disease progression in MS, rather than the disability of the patient. The latter is often characterized using the expanded disability status score (EDSS). The progress rate of the disease, magnetic resonance imaging (MRI)-based measures of ‘black hole lesions’, and atrophy have all been shown to be predicted well by MSSS. In this study we investigated possible relationships between brain metabolite concentrations, measured using proton (1H) magnetic resonance spectroscopy (MRS), and MSSS. Purpose: Our aims were to quantitatively investigate the metabolite concentrations in normal appearing white matter (NAWM) in MS-patients, and also to investigate possible correlations between disease subtype, EDSS and MSSS and metabolite concentrations. To minimize the interference from lesion contamination in the MRS measurement, a refined novel analysis procedure had to be developed in order to correct for partial volume effects in tissues near plaques. Materials and Methods: Forty eight patients with Clinically Definite MS (CDMS), and 18 normal control subjects (NC) were included retrospectively from several MRS studies. T1, T2, and proton density MRI, and four white matter 1H MRS single voxel PRESS (Point-REsolved SpectroScopy) spectra were acquired in each subject using echo time 35 ms and repetition time 6000 ms on a 1.5 T MR-scanner. A total of 108 examinations were acquired from patients and 18 from NC. Absolutely quantified NAWM metabolite concentrations were determined using a mixed linear model (MLM) analysis that included the degree of T2 lesion contamination in each voxel. The T2 lesion contamination of the MRS voxels was also used as an estimate of ‘lesion load’ at each exam. The corrected metabolite concentrations were then correlated with clinical measures of the patients’ status, including EDSS and MSSS. Results: The axonal marker N-acetyl aspartate (NAA) did not correlate with either EDSS or MSSS. The glial cell markers creatine and myo-inositol correlated positively with EDSS. Creatine and glutamate correlated positively with MSSS. The ‘estimated lesion load’ correlated positively not only with EDSS, but also with the number of bouts since disease onset. Importantly, it did not correlate with MSSS. Conclusion: The most interesting findings were the unchanged concentrations of NAA, and the concomitant increase of creatine and myo-inositol during the course of disease progression in MSpatients. These not only indicated a constant axonal density, but also that a simultaneous development of gliosis occurred. These processes are most likely linked to demyelination, as well as development of white matter atrophy, a process in which the demyelinated volume is replaced by the surrounding tissue leading to a net loss of white matter. As a consequence of this process, axons in NAWM are probably damaged, which leads to a higher concentration of glia cells relative to the axonal volume. The positive correlation that was found between MSSS, and the glutamate and creatine concentrations in NAWM, in combination with a complete lack of correlation between lesion load and MSSS, suggests that altered glutamate metabolism, and subsequent demyelination and gliosis, is an important pathophysiological mechanism in MS.

Nyckelord

MEDICINE
MEDICIN

Publikations- och innehållstyp

vet (ämneskategori)
ovr (ämneskategori)

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy