SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:liu-70442"
 

Sökning: id:"swepub:oai:DiVA.org:liu-70442" > Mechanical stimulat...

Mechanical stimulation of epithelial cells using polypyrrole microactuators.

Svennersten, Karl (författare)
Karolinska Institutet
Berggren, Magnus (författare)
Linköpings universitet,Fysik och elektroteknik,Tekniska högskolan
Richter-Dahlfors, Agneta (författare)
Karolinska Institutet
visa fler...
Jager, Edwin W H (författare)
Linköpings universitet,Institutionen för teknik och naturvetenskap,Tekniska högskolan
visa färre...
 (creator_code:org_t)
Royal Society of Chemistry (RSC), 2011
2011
Engelska.
Ingår i: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 11:19, s. 3287-3293
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The importance of mechanotransduction for physiological systems is becoming increasingly recognized. The effect of mechanical stimulation is well studied in organs and tissues, for instance by using flexible tissue culture substrates that can be stretched by external means. However, on the cellular and subcellular level, dedicated technology to apply appropriate mechanical stimuli is limited. Here we report an organic electronic microactuator chip for mechanical stimulation of single cells. These chips are manufactured on silicon wafers using traditional microfabrication and photolithography techniques. The active unit of the chip consists of the electroactive polymer polypyrrole that expands upon the application of a low potential. The fact that polypyrrole can be activated in physiological electrolytes makes it well suited as the active material in a microactuator chip for biomedical applications. Renal epithelial cells, which are responsive to mechanical stimuli and relevant from a physiological perspective, are cultured on top of the microactuator chip. The cells exhibit good adhesion and spread along the surface of the chip. After culturing, individual cells are mechanically stimulated by electrical addressing of the microactuator chip and the response to this stimulation is monitored as an increase in intracellular Ca(2+). This Ca(2+) response is caused by an autocrine ATP signalling pathway associated with mechanical stimulation of the cells. In conclusion, the present work demonstrates a microactuator chip based on an organic conjugated polymer, for mechanical stimulation of biological systems at the cellular and sub-cellular level.

Nyckelord

MEDICINE
MEDICIN

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy