SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:liu-91116"
 

Sökning: id:"swepub:oai:DiVA.org:liu-91116" > Robust Image Regist...

Robust Image Registration for Improved Clinical Efficiency : Using Local Structure Analysis and Model-Based Processing

Forsberg, Daniel (författare)
Linköpings universitet,Medicinsk informatik,Tekniska högskolan,Centrum för medicinsk bildvetenskap och visualisering, CMIV
Knutsson, Hans, Professor (preses)
Linköpings universitet,Medicinsk informatik,Centrum för medicinsk bildvetenskap och visualisering, CMIV,Tekniska högskolan
Andersson, Mats, Ph.D. (preses)
Linköpings universitet,Medicinsk informatik,Centrum för medicinsk bildvetenskap och visualisering, CMIV,Tekniska högskolan
visa fler...
Lundström, Claes, Ph.D. (preses)
Linköpings universitet,Medie- och Informationsteknik,Centrum för medicinsk bildvetenskap och visualisering, CMIV,Tekniska högskolan
Niessen, Wiro, Professor (opponent)
Erasmus MC - University Medical Center Rotterdam
visa färre...
 (creator_code:org_t)
ISBN 9789175196374
Linköping : Linköping University Electronic Press, 2013
Engelska 120 s.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Medical imaging plays an increasingly important role in modern healthcare. In medical imaging, it is often relevant to relate different images to each other, something which can prove challenging, since there rarely exists a pre-defined mapping between the pixels in different images. Hence, there is a need to find such a mapping/transformation, a procedure known as image registration. Over the years, image registration has been proved useful in a number of clinical situations. Despite this, current use of image registration in clinical practice is rather limited, typically only used for image fusion. The limited use is, to a large extent, caused by excessive computation times, lack of established validation methods/metrics and a general skepticism toward the trustworthiness of the estimated transformations in deformable image registration.This thesis aims to overcome some of the issues limiting the use of image registration, by proposing a set of technical contributions and two clinical applications targeted at improved clinical efficiency. The contributions are made in the context of a generic framework for non-parametric image registration and using an image registration method known as the Morphon. In image registration, regularization of the estimated transformation forms an integral part in controlling the registration process, and in this thesis, two regularizers are proposed and their applicability demonstrated. Although the regularizers are similar in that they rely on local structure analysis, they differ in regard to implementation, where one is implemented as applying a set of filter kernels, and where the other is implemented as solving a global optimization problem. Furthermore, it is proposed to use a set of quadrature filters with parallel scales when estimating the phase-difference, driving the registration. A proposal that brings both accuracy and robustness to the registration process, as shown on a set of challenging image sequences. Computational complexity, in general, is addressed by porting the employed Morphon algorithm to the GPU, by which a performance improvement of 38-44x is achieved, when compared to a single-threaded CPU implementation.The suggested clinical applications are based upon the concept paint on priors, which was formulated in conjunction with the initial presentation of the Morphon, and which denotes the notion of assigning a model a set of properties (local operators), guiding the registration process. In this thesis, this is taken one step further, in which properties of a model are assigned to the patient data after completed registration. Based upon this, an application using the concept of anatomical transfer functions is presented, in which different organs can be visualized with separate transfer functions. This has been implemented for both 2D slice visualization and 3D volume rendering. A second application is proposed, in which landmarks, relevant for determining various measures describing the anatomy, are transferred to the patient data. In particular, this is applied to idiopathic scoliosis and used to obtain various measures relevant for assessing spinal deformity. In addition, a data analysis scheme is proposed, useful for quantifying the linear dependence between the different measures used to describe spinal deformities.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Medicinsk bildbehandling (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Medical Image Processing (hsv//eng)

Nyckelord

Image registration
deformable models
scoliosis
visualization
volume rendering
adaptive regularization
GPGPU
CUDA

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy