SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:lnu-108668"
 

Sökning: id:"swepub:oai:DiVA.org:lnu-108668" > Impact of anoxic co...

Impact of anoxic conditions, uranium(VI) and organic phosphate substrate on the biogeochemical potential of the indigenous bacterial community of bentonite

Povedano-Priego, Cristina (författare)
Univ Granada, Spain
Jroundi, Fadwa (författare)
Univ Granada, Spain
Lopez-Fernandez, Margarita (författare)
Linnéuniversitetet,Institutionen för biologi och miljö (BOM),Ctr Ecol & Evolut Microbial Model Syst EEMiS
visa fler...
Morales-Hidalgo, Mar (författare)
Univ Granada, Spain
Martin-Sanchez, Ines (författare)
Univ Granada, Spain
Javier Huertas, F. (författare)
Univ Granada, Spain
Dopson, Mark, 1970- (författare)
Linnéuniversitetet,Institutionen för biologi och miljö (BOM),Ctr Ecol & Evolut Microbial Model Syst EEMiS
Merroun, Mohamed L. (författare)
Univ Granada, Spain
visa färre...
 (creator_code:org_t)
Elsevier, 2022
2022
Engelska.
Ingår i: Applied Clay Science. - : Elsevier. - 0169-1317 .- 1872-9053. ; 216
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Uranium (U) is the most hazardous radionuclide in nuclear waste and its harmful effects depend on its mobility and bioavailability. Microorganisms can affect the speciation of radionuclides and their migration in Deep Geological Repositories (DGR) for high level radioactive waste (HLW) storage. Consequently, a better understanding of microbe-radionuclide interactions within a DGR concept is essential for a safe storage. With that in mind, bentonite microcosms amended with uranyl nitrate and glycerol-2-phosphate were incubated for six months under anoxic conditions. Post-incubation 16S rRNA gene sequencing revealed high microbial diversities including glycerol oxidizers such as Clostridium and Desulfovibrio and nitrate reducers (Limnobacter and Brevundimonas). In addition, uranium-reducing bacteria (Desulfovibrio and Pseudomonas) were highly enriched in glycerol-2-phosphate-uranium amended microcosms. These bacteria may contribute to uranium immobilization through enzymatic reduction and/or biomineralization. Scanning electron microscopy of colored spots on the surface of the bentonite in the microcosms indicated the probable formation of Mn(IV) oxides likely through the activity of Mn(II)-oxidizing microbes. This could affect the biogeochemical cycle of U(VI) by concentrating and immobilizing this element in the bentonites. Finally, X-ray diffraction determined a high structural stability of bentonites. The outputs of this study help to predict the impact of microbial activity (e.g. smectite alteration, metal corrosion, and radionuclides mobilization) on the long-term performance of a DGR and to develop appropriate waste treatments, remediation, and management strategies.

Ämnesord

NATURVETENSKAP  -- Biologi -- Mikrobiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Microbiology (hsv//eng)

Nyckelord

Bacterial diversity
DGR
Radionuclides
G2P
Bioreduction
Immobilization
Mikrobiologi
Microbiology

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy