SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:ltu-102664"
 

Sökning: id:"swepub:oai:DiVA.org:ltu-102664" > On flow of power-la...

On flow of power-law fluids between adjacent surfaces : Why is it possible to derive a Reynolds-type equation for pressure-driven flow, but not for shear-driven flow?

Almqvist, Andreas (författare)
Luleå tekniska universitet,Maskinelement
Burtseva, Evgeniya, 1988- (författare)
Luleå tekniska universitet,Matematiska vetenskaper
Rajagopal, Kumbakonam (författare)
J. Mike Walker’66 Department of Mechanical Engineering, Texas A&M University, 100 Mechanical Engineering, Office Building, 3123 TAMU, College Station, TX 77843-3123, TX, USA
visa fler...
Wall, Peter (författare)
Luleå tekniska universitet,Matematiska vetenskaper
visa färre...
 (creator_code:org_t)
Elsevier, 2023
2023
Engelska.
Ingår i: Applications in Engineering Science. - : Elsevier. - 2666-4968. ; 15
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Flows of incompressible Navier–Stokes (Newtonian) fluids between adjacent surfaces are encountered in numerous practical applications, such as seal leakage and bearing lubrication. In seals, the flow is primarily pressure-driven, whereas, in bearings, the dominating driving force is due to shear. The governing Navier–Stokes system of equations can be significantly simplified due to the small distance between the surfaces compared to their size. From the simplified system, it is possible to derive a single lower-dimensional equation, known as the Reynolds equation, which describes the pressure field. Once the pressure field is computed, it can be used to determine the velocity field. This computational algorithm is much simpler to implement than a direct numerical solution of the Navier–Stokes equations and is therefore widely employed by engineers. The primary objective of this article is to investigate the possibility of deriving a type of Reynolds equation also for non-Newtonian fluids, using the balance of linear momentum. By considering power-law fluids we demonstrate that it is not possible for shear-driven flows, whereas it is feasible for pressure-driven flows. Additionally, we demonstrate that in the full 3D model, a normal stress boundary condition at the inlet/outlet implies a Dirichlet condition for the pressure in the Reynolds equation associated with pressure-driven flow. Furthermore, we establish that a Dirichlet condition for the velocity at the inlet/outlet in the 3D model results in a Neumann condition for the pressure in the Reynolds equation.

Ämnesord

NATURVETENSKAP  -- Matematik -- Matematisk analys (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Mathematical Analysis (hsv//eng)

Nyckelord

Navier-Stokes equation
Reynolds equation
Poiseuille law
Lower-dimensional model
Power-law fluid
Non-Newtonian fluid
Machine Elements
Maskinelement
Applied Mathematics
Tillämpad matematik

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy