SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:ltu-104175"
 

Sökning: id:"swepub:oai:DiVA.org:ltu-104175" > Boosting-based ense...

Boosting-based ensemble machine learning models for predicting unconfined compressive strength of geopolymer stabilized clayey soil

Abdullah, Gamil M. S. (författare)
Department of Civil Engineering, College of Engineering, Najran University, P.O. 1988, Najran, Saudi Arabia
Ahmad, Mahmood (författare)
Institute of Energy Infrastructure, Universiti Tenaga Nasional, 43000, Kajang, Malaysia; Department of Civil Engineering, University of Engineering and Technology Peshawar (Bannu Campus), Bannu, 28100, Pakistan
Babur, Muhammad (författare)
Department of Civil Engineering, Faculty of Engineering, University of Central Punjab, Lahore, 54000, Pakistan
visa fler...
Badshah, Muhammad Usman (författare)
Water Wing, Water and Power Development Authority (WAPDA), WAPDA House Peshawar, Peshawar, 25000, Pakistan
Al-Mansob, Ramez A. (författare)
Department of Civil Engineering, Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, 50728, Selangor, Malaysia
Gamil, Yaser (författare)
Luleå tekniska universitet,Byggkonstruktion och brand,Department of Civil Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
Fawad, Muhammad (författare)
Silesian University of Technology, Gliwice, Poland; Budapest University of Technology and Economics, Budapest, Hungary
visa färre...
Department of Civil Engineering, College of Engineering, Najran University, PO. 1988, Najran, Saudi Arabia Institute of Energy Infrastructure, Universiti Tenaga Nasional, 43000, Kajang, Malaysia; Department of Civil Engineering, University of Engineering and Technology Peshawar (Bannu Campus), Bannu, 28100, Pakistan (creator_code:org_t)
Springer Nature, 2024
2024
Engelska.
Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The present research employs new boosting-based ensemble machine learning models i.e., gradient boosting (GB) and adaptive boosting (AdaBoost) to predict the unconfined compressive strength (UCS) of geopolymer stabilized clayey soil. The GB and AdaBoost models were developed and validated using 270 clayey soil samples stabilized with geopolymer, with ground-granulated blast-furnace slag and fly ash as source materials and sodium hydroxide solution as alkali activator. The database was randomly divided into training (80%) and testing (20%) sets for model development and validation. Several performance metrics, including coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and mean squared error (MSE), were utilized to assess the accuracy and reliability of the developed models. The statistical results of this research showed that the GB and AdaBoost are reliable models based on the obtained values of R2 (= 0.980, 0.975), MAE (= 0.585, 0.655), RMSE (= 0.969, 1.088), and MSE (= 0.940, 1.185) for the testing dataset, respectively compared to the widely used artificial neural network, random forest, extreme gradient boosting, multivariable regression, and multi-gen genetic programming based models. Furthermore, the sensitivity analysis result shows that ground-granulated blast-furnace slag content was the key parameter affecting the UCS.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik -- Geoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering -- Geotechnical Engineering (hsv//eng)

Nyckelord

Byggmaterial
Building Materials

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy