SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:ltu-104643"
 

Sökning: id:"swepub:oai:DiVA.org:ltu-104643" > Predicting the prop...

Predicting the properties of concrete incorporating graphene nano platelets by experimental and machine learning approaches

Alyousef, Rayed (författare)
Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
Nassar, Roz-Ud-Din (författare)
Department of Civil and Infrastructure Engineering, American University of Ras Al Khaimah, United Arab Emirates
Fawad, Muhammad (författare)
Silesian University of Technology Poland, Poland; Budapest University of Technology and Economics Hungary, Hungary
visa fler...
Farooq, Furqan (författare)
NUST Institute of Civil Engineering (NICE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
Gamil, Yaser (författare)
Department of Civil Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
Najeh, Taoufik (författare)
Luleå tekniska universitet,Drift, underhåll och akustik
visa färre...
 (creator_code:org_t)
Elsevier Ltd, 2024
2024
Engelska.
Ingår i: Case Studies in Construction Materials. - : Elsevier Ltd. - 2214-5095. ; 20
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Modern infrastructure requirements necessitate structural components with improved durability and strength properties. The incorporation of nanomaterials (NMs) into concrete emerges as a viable strategy to enhance both the durability and strength of the concrete. Nevertheless, the complexities inherent in these nanoscale cementitious composites are notably intricate. Traditional regression models face constraints in comprehensively capturing these intricate compositions. Thus, posing challenges in delivering precise and dependable estimations. Therefore, the current study utilized three machine learning (ML) methods, including artificial neural network (ANN), gene expression programming (GEP), and adaptive neuro-fuzzy inference system (ANFIS), in conjunction with experimental investigation to study the effect of the integration of graphene nanoplatelets (GNPs) on the electrical resistivity (ER) and compressive strength (CS) of concrete containing GNPs. Concrete containing GNPs demonstrated an improved fractional change in resistivity (FCR) and strength. The experimental measures depict that strength enhancement was notable at GNP concentrations of 0.05% and 0.1%, showcasing increases of 13.23% and 16.58%, respectively. Simultaneously, the highest observed FCR change reached −12.19% and −13%, respectively. The prediction efficacy of the three models proved to be outstanding in forecasting the characteristics of concrete containing GNPs. For CS, the GEP, ANN, and ANFIS models demonstrated impressive correlation coefficient (R) values of 0.974, 0.963, and 0.954, respectively. For electrical resistivity, the GEP, ANN, and ANFIS models exhibited high R-values of 0.999, 0.995, and 0.987, respectively. The comparative analysis of the models revealed that the GEP model delivered precise predictions for both ER and CS. The mean absolute error (MAE) of the GEP-CS model demonstrated a 14.51% reduction compared to the ANN-CS model and a substantial 48.15% improvement over the ANFIS-CS model. Similarly, the ANN-CS model displayed an MAE that was 38.14% lower compared to the ANFIS-CS model. Moreover, the MAE of the GEP-ER model demonstrated a 56.80% reduction compared to the ANN-CS model and a substantial 82.47% improvement over the ANFIS-CS model. The Shapley Additive explanation (SHAP) analysis provided that curing age exhibited the highest SHAP score. Thus, indicating its predominant contribution to CS prediction. In predicting ER, the graphene content exhibited the highest SHAP score, signifying its predominant contribution to ER estimation. This study highlights ML's accuracy in predicting the properties of concrete with graphene nanoplatelets, offering a fast and cost-effective alternative to time-consuming experiments.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Annan materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Other Materials Engineering (hsv//eng)

Nyckelord

Graphene nanoplatelets reinforced concrete
Machine learning
Nanomaterials
Predictive models
SHAP analysis
Operation and Maintenance Engineering
Drift och underhållsteknik

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy