SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:ltu-71302"
 

Sökning: id:"swepub:oai:DiVA.org:ltu-71302" > Machine learning to...

Machine learning to support social media empowered patients in cancer care and cancer treatment decisions

De Silva, Daswin (författare)
Research Centre for Data Analytics and Cognition, La Trobe University, Victoria, Australia
Ranasinghe, Weranja (författare)
Research Centre for Data Analytics and Cognition, La Trobe University, Victoria, Australia; Austin Hospital, Heidelberg, Victoria, Australia
Bandaragoda, Tharindu (författare)
Research Centre for Data Analytics and Cognition, La Trobe University, Victoria, Australia
visa fler...
Adikari, Achini (författare)
Research Centre for Data Analytics and Cognition, La Trobe University, Victoria, Australia
Mills, Nishan (författare)
Research Centre for Data Analytics and Cognition, La Trobe University, Victoria, Australia
Iddamalgoda, Lahiru (författare)
Research Centre for Data Analytics and Cognition, La Trobe University, Victoria, Australia
Alahakoon, Damminda (författare)
Research Centre for Data Analytics and Cognition, La Trobe University, Victoria, Australia
Lawrentschuk, Nathan (författare)
Austin Hospital, Heidelberg, Victoria, Australia
Persad, Raj (författare)
North Bristol, NHS Trust, Bristol, United Kingdom
Osipov, Evgeny (författare)
Luleå tekniska universitet,Datavetenskap
Gray, Richard (författare)
School of Nursing and Midwifery, La Trobe University, Victoria, Australia
Bolton, Damien (författare)
Austin Hospital, Heidelberg, Victoria, Australia
visa färre...
 (creator_code:org_t)
2018-10-18
2018
Engelska.
Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 13:10
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • BACKGROUNDA primary variant of social media, online support groups (OSG) extend beyond the standard definition to incorporate a dimension of advice, support and guidance for patients. OSG are complementary, yet significant adjunct to patient journeys. Machine learning and natural language processing techniques can be applied to these large volumes of unstructured text discussions accumulated in OSG for intelligent extraction of patient-reported demographics, behaviours, decisions, treatment, side effects and expressions of emotions. New insights from the fusion and synthesis of such diverse patient-reported information, as expressed throughout the patient journey from diagnosis to treatment and recovery, can contribute towards informed decision-making on personalized healthcare delivery and the development of healthcare policy guidelines.METHODS AND FINDINGSWe have designed and developed an artificial intelligence based analytics framework using machine learning and natural language processing techniques for intelligent analysis and automated aggregation of patient information and interaction trajectories in online support groups. Alongside the social interactions aspect, patient behaviours, decisions, demographics, clinical factors, emotions, as subsequently expressed over time, are extracted and analysed. More specifically, we utilised this platform to investigate the impact of online social influences on the intimate decision scenario of selecting a treatment type, recovery after treatment, side effects and emotions expressed over time, using prostate cancer as a model. Results manifest the three major decision-making behaviours among patients, Paternalistic group, Autonomous group and Shared group. Furthermore, each group demonstrated diverse behaviours in post-decision discussions on clinical outcomes, advice and expressions of emotion during the twelve months following treatment. Over time, the transition of patients from information and emotional support seeking behaviours to providers of information and emotional support to other patients was also observed.CONCLUSIONSFindings from this study are a rigorous indication of the expectations of social media empowered patients, their potential for individualised decision-making, clinical and emotional needs. The increasing popularity of OSG further confirms that it is timely for clinicians to consider patient voices as expressed in OSG. We have successfully demonstrated that the proposed platform can be utilised to investigate, analyse and derive actionable insights from patient-reported information on prostate cancer, in support of patient focused healthcare delivery. The platform can be extended and applied just as effectively to any other medical condition.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Nyckelord

Dependable Communication and Computation Systems
Kommunikations- och beräkningssystem

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

  • PLOS ONE (Sök värdpublikationen i LIBRIS)

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy