SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:ltu-95798"
 

Sökning: id:"swepub:oai:DiVA.org:ltu-95798" > Aspects of material...

Aspects of material and heat transfer in drop- and powder-based laser additive manufacturing

Da Silva, Adrien (författare)
Luleå tekniska universitet,Produkt- och produktionsutveckling
Frostevarg, Jan, Teknologie doktor, 1982- (preses)
Luleå tekniska universitet,Produkt- och produktionsutveckling
Kaplan, Alexander (preses)
Luleå tekniska universitet,Produkt- och produktionsutveckling
visa fler...
Graf, Thomas (opponent)
Institut Für Strahlwerkzeuge (IFSW), University of Stuttgart, Stuttgart, Germany
visa färre...
 (creator_code:org_t)
ISBN 9789180482806
Luleå : Luleå University of Technology, 2023
Engelska.
Serie: Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, 1402-1544
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Additive Manufacturing became a major research topic and part of industrial production in the past years. Numerous techniques now allow to build 3D structures with a wide choice of materials. When it comes to processing of metals, a laser beam is often used as a heat source to melt either a wire or powder. Novel approaches of material deposition are also developed, such as Laser Droplet Generation, which could potentially be applied to Additive Manufacturing. During the process, the laser beam light is partly absorbed by the material, and is then converted to heat, which can induce melting and even vaporization. Additive Manufacturing presents several processing challenges, such as the recoil pressure acting on the drops and powder particles that affects their trajectory. Storage and recycling of the powders is also an important aspect since the powder properties are changed through aging. Another challenge is the adjustment of process parameters according to varying deposition conditions, where the use of process monitoring techniques is crucial.Therefore, this thesis aims at better understanding (i) the effects of recoil pressureon metal drops and powder particles, (ii) powder aging and its effects on the process, and (iii) process optimisation and stability via monitoring. In the six adjoined papers, high-speed imaging and thermal imaging were used to observe laser Additive Manufacturing processes involving both metal drops and powders. The videos enabled to observe drop detachments, measure trajectories, plot powder density maps, quantify powder catchment in the melt pool, measure themelt pool geometry, detect oxides, and extract cooling rates. The experimental results were supplemented with material analysis and theoretical calculations of thermodynamics, recoil pressure and surface tension.These studies allowed to conclude that the recoil pressure induced by laser irradiation on a drop or a powder particle can have some significant effect such as acceleration, change of trajectory, or disintegration. However, these effects seem to be considerably lower than what theoretical models predict. It was also found that the recoil pressure can be used to accurately detach drops from a wire, which was utilised as a new material deposition method for Additive Manufacturing. In Directed Energy deposition, it was showed that aging of the aluminium powder feedstock should be avoided since it induces high porosity, high dilution and decreased mechanical properties. Finally, to guarantee a defect-free deposition during the whole process, it was demonstrated that a thermal camera can be used to monitor the melt pool size, which allows to apply appropriate laser power adjustments to compensate for changing building conditions.  

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Produktionsteknik, arbetsvetenskap och ergonomi (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Production Engineering, Human Work Science and Ergonomics (hsv//eng)

Nyckelord

Produktionsutveckling
Manufacturing Systems Engineering

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy