SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:mdh-62365"
 

Sökning: id:"swepub:oai:DiVA.org:mdh-62365" > Depth optimization ...

Depth optimization of solidification properties of a latent heat energy storage unit under constant rotation mechanism

Huang, X. (författare)
Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Li, F. (författare)
Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Lu, L. (författare)
Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
visa fler...
Li, Z. (författare)
Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Yang, X. (författare)
Institute of the Building Environment & Sustainability Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Yan, Jinyue, 1959- (författare)
Mälardalens universitet,Framtidens energi,Renewable Energy Research Group (RERG), Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
visa färre...
 (creator_code:org_t)
Elsevier Ltd, 2023
2023
Engelska.
Ingår i: Energy and Buildings. - : Elsevier Ltd. - 0378-7788 .- 1872-6178. ; 290
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Latent heat storage technology plays an important role in the effective utilization of clean energy such as solar energy in building heating, but the low thermal conductivity of heat storage medium (phase change material) affects its large-scale application. As a new heat storage enhancement technology, rotation mechanism has a good application prospect. In this paper, the solidification performance of a triplex-tube latent heat thermal energy storage unit at constant speed (0.5 rpm) is studied numerically. Different optimization design methods (Taguchi method and response surface method) are used for deep analysis. The influences of fin position, number, and material on solidification properties are explored by the Taguchi method. Then, the unit structure (fin angle, fin length, and fin width) is optimized by the response surface method. Compared with the original structure, the average heat release rate of 8 copper fins with all outer tubes is increased by 108.93%, and the solidification time is reduced by 52.06%. The optimal structure can further shorten the solidification time by 29.14% and increase the average heat release rate by 40.5%. Additionally, the study of wall temperature shows that increasing temperature difference makes solidification speed faster and heat energy release faster. This effect effectively eliminates the adverse effects of slow solidification during the later stages of the process on the system. 

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Nyckelord

Latent heat energy storage
Response surface method
Rotation mechanism
Solidification performance
Taguchi design

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Huang, X.
Li, F.
Lu, L.
Li, Z.
Yang, X.
Yan, Jinyue, 195 ...
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Maskinteknik
och Energiteknik
Artiklar i publikationen
Energy and Build ...
Av lärosätet
Mälardalens universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy