SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:ri-50120"
 

Sökning: id:"swepub:oai:DiVA.org:ri-50120" > The role of contact...

The role of contact angle and pore width on pore condensation and freezing

David, Robert (författare)
ETH Zürich, Switzerland; University of Oslo, Norway
Fahrni, Jonas (författare)
RISE,Bioraffinaderi och energi,Zürich University of Applied Sciences, Switzerland;
Marcolli, Claudia (författare)
ETH Zürich, Switzerland
visa fler...
Mahrt, Fbaian (författare)
ETH Zürich, Switzerland; University of British Columbia, Canada
Brühwiler, Dominik (författare)
Zürich University of Applied Sciences, Switzerland
Kanji, Zamin (författare)
ETH Zürich, Switzerland
visa färre...
 (creator_code:org_t)
2020-08-12
2020
Engelska.
Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:15, s. 9419-9440
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • It has recently been shown that pore condensation and freezing (PCF) is a mechanism responsible for ice formation under cirrus cloud conditions. PCF is defined as the condensation of liquid water in narrow capillaries below water saturation due to the inverse Kelvin effect, followed by either heterogeneous or homogeneous nucleation depending on the temperature regime and presence of an ice-nucleating active site. By using sol-gel synthesized silica with well-defined pore diameters, morphology and distinct chemical surface-functionalization, the role of the water-silica contact angle and pore width on PCF is investigated. We find that for the pore diameters (2.2-9.2 nm) and water contact angles (15-78ĝ) covered in this study, our results reveal that the water contact angle plays an important role in predicting the humidity required for pore filling, while the pore diameter determines the ability of pore water to freeze. For T>235 K and below water saturation, pore diameters and water contact angles were not able to predict the freezing ability of the particles, suggesting an absence of active sites; thus ice nucleation did not proceed via a PCF mechanism. Rather, the ice-nucleating ability of the particles depended solely on chemical functionalization. Therefore, parameterizations for the ice-nucleating abilities of particles in cirrus conditions should differ from parameterizations at mixed-phase clouds conditions. Our results support PCF as the atmospherically relevant ice nucleation mechanism below water saturation when porous surfaces are encountered in the troposphere. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Nyckelord

cirrus
cloud microphysics
condensation
freezing
ice mechanics
nucleation
saturation

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy