SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:ri-64103"
 

Sökning: id:"swepub:oai:DiVA.org:ri-64103" > Computational model...

Computational modeling and temperature measurements using emission spectroscopy on a non-transferred plasma torch

Siddanathi, Likitha Sai (författare)
Luleå tekniska universitet,Strömningslära och experimentell mekanik
Westerberg, Lars-Göran (författare)
Luleå tekniska universitet,Strömningslära och experimentell mekanik
Åkerstedt, Hans O. (författare)
Luleå tekniska universitet,Strömningslära och experimentell mekanik
visa fler...
Wiinikka, Henrik (författare)
RISE,Bioraffinaderi och energi,RISE AB, SE-941 38 Piteå, Sweden
Sepman, Alexey (författare)
RISE,Bioraffinaderi och energi,RISE AB, SE-941 38 Piteå, Sweden
visa färre...
 (creator_code:org_t)
American Institute of Physics Inc. 2023
2023
Engelska.
Ingår i: AIP Advances. - : American Institute of Physics Inc.. - 2158-3226. ; 13:2
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • A non-transferred plasma torch is a device used to generate a steady thermal plasma jet. Plasma torches have the potential to replace fossil fuel burners used as heat sources in the process industry. Today, however, the available plasma torches are of small scale compared to the power used in the burners in the process industry. In order to understand the effects of large scales on the plasma flow dynamics, it is essential to understand the operation of the plasma torch under different operating conditions and for different geometries. In this study, the analysis of a non-transferred plasma torch has been carried out using both computational and experimental methods. Computationally, the magnetohydrodynamic (MHD) equations are solved using a single-fluid model on a 2D axisymmetric torch geometry. The experiments are performed using emission spectroscopy to measure the plasma jet temperature at the outlet. This paper explains the changes in the arc formation, temperature, and velocity for different working gases and power inputs. Furthermore, the possibilities and disadvantages of the MHD approach, considering a local thermal equilibrium, are discussed. It was found that in general, the computational temperature obtained is supported by the experimental and equilibrium data. The computational temperatures agree by within 10% with the experimental ones at the center of the plasma torch. The paper concludes by explaining the significant impact of input properties like working gas and power input on the output properties like velocity and temperature of plasma jet. © 2023 Author(s).

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Nyckelord

Emission spectroscopy
Fossil fuels
Magnetohydrodynamics
Plasma diagnostics
Plasma jets
Temperature measurement
Computational modelling
Gas input
Heat sources
Large-scales
Power
Power input
Process industries
Small scale
Thermal plasma jets
Working gas
Plasma torches
Strömningslära

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy