SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:su-162104"
 

Sökning: id:"swepub:oai:DiVA.org:su-162104" > Influence of chemic...

Influence of chemical kinetics on detonation initiating by temperature gradients in methane/air

Wang, Cheng (författare)
Qian, Chengeng (författare)
Liu, JianNan (författare)
visa fler...
Liberman, Mikhail A. (författare)
Stockholms universitet,Nordiska institutet för teoretisk fysik (Nordita)
visa färre...
 (creator_code:org_t)
Elsevier BV, 2018
2018
Engelska.
Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180 .- 1556-2921. ; 197, s. 400-415
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Different simplified and detailed chemical models and their impact on simulations of combustion regimes initiating by the initial temperature gradient in methane/air mixtures are studied. The limits of the regimes of reaction wave propagation depend upon the spontaneous wave speed and the characteristic velocities of the problem. The present study mainly focus to identify conditions required for the development a detonation and to compare the difference between simplified chemical models and detailed chemistry. It is shown that a widely used simplified chemical schemes, such as one-step, two-step and other simplified models, do not reproduce correctly the ignition process in methane/air mixtures. The ignition delay times calculated using simplified models are in orders of magnitude shorter than the ignition delay times calculated using detailed chemical models and measured experimentally. This results in considerably different times when the exothermic reaction affects significantly the ignition, evolution, and coupling of the spontaneous reaction wave and pressure waves. We show that the temperature gradient capable to trigger detonation calculated using detailed chemical models is much shallower (the size of the hot spot is much larger) than that, predicted by simulations with simplified chemical models. These findings suggest that the scenario leading to the deflagration to detonation transition (DDT) may depend greatly on the chemical model used in simulations and that the Zel'dovich gradient mechanism is not necessary a universal mechanism triggering DDT. The obtained results indicate that the conclusions derived from the simulations of DDT with simplified chemical models should be viewed with great caution.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Kemiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering (hsv//eng)

Nyckelord

Temperature gradient
Chemical models
Deflagration
Detonation
Explosions
Ignition

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Wang, Cheng
Qian, Chengeng
Liu, JianNan
Liberman, Mikhai ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Fysik
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Kemiteknik
Artiklar i publikationen
Combustion and F ...
Av lärosätet
Stockholms universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy