SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:su-229305"
 

Search: id:"swepub:oai:DiVA.org:su-229305" > Convergence in simu...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Convergence in simulating global soil organic carbon by structurally different models after data assimilation

Tao, Feng (author)
Houlton, Benjamin Z. (author)
Huang, Yuanyuan (author)
show more...
Wang, Ying-Ping (author)
Manzoni, Stefano, 1979- (author)
Stockholms universitet,Institutionen för naturgeografi,Bolincentret för klimatforskning (tills m KTH & SMHI)
Ahrens, Bernhard (author)
Mishra, Umakant (author)
Jiang, Lifen (author)
Huang, Xiaomeng (author)
Luo, Yiqi (author)
show less...
 (creator_code:org_t)
2024
2024
English.
In: Global Change Biology. - 1354-1013 .- 1365-2486. ; 30:5
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Current biogeochemical models produce carbon–climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first-order or Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data with high-quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics-function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Klimatforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Climate Research (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Multidisciplinär geovetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geosciences, Multidisciplinary (hsv//eng)

Keyword

big data assimilation
deep learning
inter-model uncertainty
model parameterization
model structure
soil organic carbon

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view