SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:umu-178315"
 

Sökning: id:"swepub:oai:DiVA.org:umu-178315" > Direct energy trans...

Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine

Bag, Pushan, 1993- (författare)
Umeå universitet,Institutionen för fysiologisk botanik,Umeå Plant Science Centre (UPSC)
Chukhutsina, Volha (författare)
Zhang, Zishan (författare)
Umeå universitet,Umeå Plant Science Centre (UPSC),Institutionen för fysiologisk botanik,Present address: State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong, China
visa fler...
Paul, Suman (författare)
Umeå universitet,Institutionen för fysiologisk botanik,Umeå Plant Science Centre (UPSC),Present address: Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
Ivanov, Alexander G. (författare)
Shutova, Tatiana, 1964- (författare)
Umeå universitet,Umeå Plant Science Centre (UPSC),Institutionen för fysiologisk botanik
Croce, Roberta (författare)
Holzwarth, Alfred R. (författare)
Jansson, Stefan, 1959- (författare)
Umeå universitet,Umeå Plant Science Centre (UPSC),Institutionen för fysiologisk botanik
visa färre...
 (creator_code:org_t)
2020-12-15
2020
Engelska.
Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Evergreen conifers in boreal forests can survive extremely cold (freezing) temperatures during long dark winter and fully recover during summer. A phenomenon called "sustained quenching" putatively provides photoprotection and enables their survival, but its precise molecular and physiological mechanisms are not understood. To unveil them, here we have analyzed seasonal adjustment of the photosynthetic machinery of Scots pine (Pinus sylvestris) trees by monitoring multi-year changes in weather, chlorophyll fluorescence, chloroplast ultrastructure, and changes in pigment-protein composition. Analysis of Photosystem II and Photosystem I performance parameters indicate that highly dynamic structural and functional seasonal rearrangements of the photosynthetic apparatus occur. Although several mechanisms might contribute to 'sustained quenching' of winter/early spring pine needles, time-resolved fluorescence analysis shows that extreme down-regulation of photosystem II activity along with direct energy transfer from photosystem II to photosystem I play a major role. This mechanism is enabled by extensive thylakoid destacking allowing for the mixing of PSII with PSI complexes. These two linked phenomena play crucial roles in winter acclimation and protection. Evergreen conifers rely on 'sustained quenching' to protect their photosynthetic machinery during long, cold winters. Here, Bag et al. show that direct energy transfer (spillover) from photosystem II to photosystem I triggered by loss of grana stacking in chloroplast is the major component of sustained quenching in Scots pine.

Ämnesord

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy