SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:umu-178870"
 

Sökning: id:"swepub:oai:DiVA.org:umu-178870" > Impacts of fuel non...

Impacts of fuel nonequidiffusivity on premixed flame propagation in channels with open ends

Abidakun, Olatunde (författare)
Department of Mechanical and Aerospace Engineering, West Virginia University Morgantown, West Virginia, 26506, USA
Adebiyi, Abdulafeez (författare)
Department of Mechanical and Aerospace Engineering, West Virginia University Morgantown, West Virginia, 26506, USA
Valiev, Damir (författare)
Umeå universitet,Institutionen för tillämpad fysik och elektronik,Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education of China, Department of Energy and Power Engineering, Tsinghua University, Beijing, China
visa fler...
Akkerman, V’yacheslav (författare)
Department of Mechanical and Aerospace Engineering, West Virginia University Morgantown, West Virginia, USA
visa färre...
 (creator_code:org_t)
American Institute of Physics (AIP), 2021
2021
Engelska.
Ingår i: Physics of fluids. - : American Institute of Physics (AIP). - 1070-6631 .- 1089-7666. ; 33
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The present study scrutinizes premixed flame dynamics in micro-channels, thereby shedding light on advanced miniature micro-combustion technologies. While equidiffusive burning (when the Lewis number Le = 1) is a conventional approach adopted in numerous theoretical studies, real premixed flames are typically non-equidiffusive (Le ≠ 1), which leads to intriguing effects, such as diffusional-thermal instability. An equidiffusive computational study [V. Akkerman et al., Combust. Flame 145, 675–687 (2006)] reported regular oscillations of premixed flames spreading in channels having nonslip walls and open extremes. Here, this investigation is extended to nonequidiffusive combustion in order to systematically study the impact of the Lewis number on the flame in this geometry. The analysis is performed by means of computational simulations of the reacting flow equations with fully-compressible hydrodynamics and onestep Arrhenius chemical kinetics in channels with adiabatic and isothermal walls. In the adiabatic channels, which are the main case of study, it is found that the flames oscillate at low Lewis numbers, with the oscillation frequency decreasing with Le, while for the Le > 1 flames, a tendency to steady flame propagation is observed. The oscillation parameters also depend on the thermal expansion ratio and the channel width, although the impacts are rather quantitative than qualitative. The analysis is subsequently extended to the isothermal channels. It is shown that the role of heat losses to the walls is important and may potentially dominate over that of the Lewis number. At the same time, the impact of Le on burning in the isothermal channels is qualitatively weaker than that in the adiabatic channels.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Annan maskinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Other Mechanical Engineering (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy