SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:umu-201323"
 

Sökning: id:"swepub:oai:DiVA.org:umu-201323" > The 2022 magneto-op...

The 2022 magneto-optics roadmap

Kimel, Alexey (författare)
Radboud University Nijmegen,Radboud Univ Nijmegen, Netherlands
Zvezdin, Anatoly (författare)
Prokhorov General Physics Institute of the Russian Academy of Sciences,Russian Acad Sci, Russia
Sharma, Sangeeta (författare)
Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy,Max Born Inst Nichtlineare Opt & Kurzzeitspektros, Germany
visa fler...
Shallcross, Samuel (författare)
Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy,Max Born Inst Nichtlineare Opt & Kurzzeitspektros, Germany
de Sousa, Nuno (författare)
Donostia International Physics Center (DIPC),Donostia Int Phys Ctr DIPC, Spain
García-Martín, Antonio (författare)
Instituto de Micro y Nanotecnología (IMN-CNM, CSIC),CEI UAM CSIC, Spain
Salvan, Georgeta (författare)
Chemnitz University of Technology,Tech Univ Chemnitz, Germany
Hamrle, Jaroslav (författare)
Charles University in Prague,Charles Univ Prague, Czech Republic
Stejskal, Ondřej (författare)
Charles University in Prague,Charles Univ Prague, Czech Republic
McCord, Jeffrey (författare)
University of Kiel,Univ Kiel, Germany
Tacchi, Silvia (författare)
CNR Istituto Officina dei Materiali (IOM),Univ Perugia, Italy
Carlotti, Giovanni (författare)
University of Perugia,Univ Perugia, Italy
Gambardella, Pietro (författare)
ETH Zürich,Swiss Fed Inst Technol, Switzerland
Salis, Gian (författare)
IBM Research Zurich,IBM Res Zurich, Switzerland
Münzenberg, Markus (författare)
University of Greifswald,Univ Greifswald, Germany
Schultze, Martin (författare)
Graz University of Technology,Graz Univ Technol, Austria
Temnov, Vasily (författare)
École Polytechnique,CNRS, France
Bychkov, Igor V. (författare)
Chelyabinsk State University,Chelyabinsk State Univ, Russia
Kotov, Leonid N. (författare)
Syktyvkar State University,Syktyvkar State Univ, Russia
Maccaferri, Nicolò, Dr. 1988- (författare)
Umeå University,Umeå universitet,Institutionen för fysik,Department of Physics and Materials Science, University of Luxembourg, Luxembourg, Luxembourg,Umea Univ, Sweden; Univ Luxembourg, Luxembourg
Ignatyeva, Daria (författare)
Russian Quantum Center (RQC),Lomonosov Moscow State University,Russian Quantum Ctr, Russia; VI Vernadsky Crimean Fed Univ, Russia; Lomonosov Moscow State Univ, Russia
Belotelov, Vladimir (författare)
Lomonosov Moscow State University,Russian Quantum Center (RQC),Russian Quantum Ctr, Russia; VI Vernadsky Crimean Fed Univ, Russia; Lomonosov Moscow State Univ, Russia
Donnelly, Claire (författare)
Max Planck Institute for Chemical Physics of Solids,Max Planck Inst Chem Phys Solids, Germany
Rodriguez, Aurelio Hierro (författare)
University of Oviedo,Nanomaterials and Nanotechnology Research Center (CINN),Univ Oviedo, Spain; Univ Oviedo, Spain
Matsuda, Iwao (författare)
University of Tokyo,Univ Tokyo, Japan
Ruchon, Thierry (författare)
University of Paris-Saclay,Univ Paris Saclay, France
Fanciulli, Mauro (författare)
University of Paris-Saclay,Université de Cergy-Pontoise,CY Cergy Paris Univ, France; Sorbonne Univ, France
Sacchi, Maurizio (författare)
Synchrotron SOLEIL, France,Paris-Sorbonne University
Du, Chunhui Rita (författare)
University of California, San Diego,Univ Calif San Diego, CA 92093 USA; Univ Calif San Diego, CA 92093 USA
Wang, Hailong (författare)
University of California, San Diego,Univ Calif San Diego, CA 92093 USA
Armitage, N. Peter (författare)
Johns Hopkins University,Johns Hopkins Univ, MD 21210 USA
Schubert, Mathias (författare)
Linköpings universitet,Linköping University,University of Nebraska - Lincoln,Halvledarmaterial,Tekniska fakulteten,Univ Nebraska, NE 68588 USA
Darakchieva, Vanya (författare)
Linköpings universitet,Lund University,Lunds universitet,NanoLund: Centre for Nanoscience,Annan verksamhet, LTH,Lunds Tekniska Högskola,Fasta tillståndets fysik,Fysiska institutionen,Institutioner vid LTH,LTH profilområde: Nanovetenskap och halvledarteknologi,LTH profilområden,Other operations, LTH,Faculty of Engineering, LTH,Solid State Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH,LTH Profile Area: Nanoscience and Semiconductor Technology,LTH Profile areas,Faculty of Engineering, LTH,Halvledarmaterial,Tekniska fakulteten,Lund Univ, Sweden
Liu, Bilu (författare)
Tsinghua University,Tsinghua Univ, Peoples R China; Tsinghua Univ, Peoples R China
Huang, Ziyang (författare)
Tsinghua University,Tsinghua Univ, Peoples R China; Tsinghua Univ, Peoples R China
Ding, Baofu (författare)
Shenzhen Institutes of Advanced Technology, CAS,Tsinghua University,Tsinghua Univ, Peoples R China; Tsinghua Univ, Peoples R China; Chinese Acad Sci, Peoples R China
Berger, Andreas (författare)
Basque Foundation for Science,CIC nanoGUNE BRTA, Spain
Vavassori, Paolo (författare)
Basque Foundation for Science,CIC nanoGUNE BRTA, Spain; IKERBASQUE, Spain
visa färre...
 (creator_code:org_t)
2022-09-28
2022
Engelska.
Ingår i: Journal of Physics D. - : Institute of Physics (IOP). - 0022-3727 .- 1361-6463. ; 55:46
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today's magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future.

Ämnesord

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)
NATURVETENSKAP  -- Fysik -- Atom- och molekylfysik och optik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Atom and Molecular Physics and Optics (hsv//eng)

Nyckelord

magneto-optics
magnetic characterization methods
magneto-optical effects
magnetic materials
modern experimental methods
theoretical description and modelling
magnetic microscopy

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy