SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:umu-220012"
 

Sökning: id:"swepub:oai:DiVA.org:umu-220012" > Martian global curr...

Martian global current systems and related solar wind energy transfer : hybrid simulation under nominal conditions

Wang, Xiao-Dong (författare)
Solar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden
Fatemi, Shahab (författare)
Umeå universitet,Institutionen för fysik
Holmström, Mats (författare)
Solar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden
visa fler...
Nilsson, Hans (författare)
Solar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden
Futaana, Yoshifumi (författare)
Solar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden
Barabash, Stas (författare)
Solar System Physics and Space Technology Programme, Swedish Institute of Space Physics, Kiruna, Sweden
visa färre...
 (creator_code:org_t)
Oxford University Press, 2024
2024
Engelska.
Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 527:4, s. 12232-12242
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The magnetized solar wind drives a current system around Mars that maintains its induced magnetosphere. The solar wind also transfers its energy to the atmospheric ions, causing continuous atmospheric erosion, which has a profound impact on the planet’s evolution history. Here, we use Amitis, a Graphics Processing Unit (GPU)-based hybrid plasma model to first reproduce the global pattern of the net electric current and ion currents under an interplanetary magnetic field perpendicular to the solar wind flow direction. The resultant current distribution matches the observations and reveals more details. Using the electric field distribution characterized earlier with the same model, we calculate for the first time the spatial distribution of energy transfer rate to the plasmas in general and to different ion species at Mars. We find out that (1) the solar wind kinetic energy is the dominant energy source that drives Martian induced magnetosphere, (2) the energy flux of the shocked solar wind flows from the magnetic equatorial plane towards the plasma sheet in the induced magnetotail, (3) both the bow shock and the induced magnetospheric boundary are dynamos where plasma energy is transferred to the electromagnetic field, and (4) the planetary ions act as loads and gain energy from the electromagnetic field. The most intense load region is the planetary ion plume. The general pattern of the energy transfer rate revealed in this study is common for induced magnetospheres. Its variabilities with the upstream conditions can provide physical insight into the observed ion escape variabilities.

Ämnesord

NATURVETENSKAP  -- Fysik -- Fusion, plasma och rymdfysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Fusion, Plasma and Space Physics (hsv//eng)
NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Nyckelord

methods: numerical
planets and satellites: terrestrial planets
planet–star interactions
plasmas

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy