SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:umu-85435"
 

Sökning: id:"swepub:oai:DiVA.org:umu-85435" > Engineering in dire...

Engineering in direct synthesis of hydrogen peroxide : targets, reactors and guidelines for operational conditions

García-Serna, Juan (författare)
Department of Chemical Engineering and Environmental Technology, University of Valladolid, Spain
Moreno-Rueda, Teresa (författare)
Department of Chemical Engineering and Environmental Technology, University of Valladolid, Spain
Biasi, Pierdomenico (författare)
Umeå universitet,Kemiska institutionen,Department of Chemical Engineering, Åbo Akademi University, Turku/Åbo, Finland
visa fler...
Cocero, María J. (författare)
Department of Chemical Engineering and Environmental Technology, University of Valladolid, Spain
Mikkola, Jyri-Pekka (författare)
Umeå universitet,Kemiska institutionen,Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, Finland
Salmi, Tapio O. (författare)
Department of Chemical Engineering, Åbo Akademi University, Turku/Åbo, Finland
visa färre...
 (creator_code:org_t)
Royal Society of Chemistry, 2014
2014
Engelska.
Ingår i: Green Chemistry. - : Royal Society of Chemistry. - 1463-9262 .- 1463-9270. ; 16:5, s. 2320-2343
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The demand for hydrogen peroxide is booming since it is considered as one of the most environmentally friendly and versatile chemical oxidants available and with a wide range of applications. The annual market close to 3000 kt/y being produced via the auto-oxidation process (with 2-ethyl anthraquinone (traditional) or amyl anthraquinone for mega-plants) is mostly supplied by the company Solvay (30%), followed by Evonik (20%) and Arkema (13%) as key intermediate. Nevertheless, the dream of direct synthesis process is close to a century year-old and it has gained momentum in research effort during the last decade with more than 15 groups active in the world. In this review, we focus the discussion on the targets, e.g. plant tonnage, the reactors and the most feasible industrial operational conditions, based on our experience, and from the point of view using the chemical engineering tools available. Thus, direct synthesis can be competitive when on-site production is required and capacities less than 10 kt/y are demanded. The total investment cost should be approximately in between 40.3±12.1 MM$ (in 2012) for a 10 kt/y size process to be comparable to the traditional process in terms of costs. Moreover, all kinds of reactors used are hereby discussed emphasizing the pros and cons; the most common ones are batch and semicontinous modes of operations. However, at the moment, demonstrations of continuous operations as well as carefully determined kinetics are needed in order to scale up the process. Finally, operational conditions, including the catalyst composition (active metal, oxidation state and support), promoters (halides and acids-pH-isoelectric point), solvents, pressure and temperature need to be carefully analysed. In our opinion, as we try to show here, H2O2 direct synthesis is a competitive process and ready for larger scale demonstration. Also, more than a hundred patents within the area support this claim, although the barries of technology demonstration and further licensing are still pending.

Ämnesord

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy