SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:uu-111685"
 

Search: id:"swepub:oai:DiVA.org:uu-111685" > Soft inertial micro...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Soft inertial microfluidics for high throughput separation of bacteria from human blood cells

Wu, Zhigang (author)
Uppsala universitet,Mikrosystemteknik
Willing, B. (author)
Bjerketorp, Joakim (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för mikrobiologi,Department of Microbiology
show more...
Jansson, Janet (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för mikrobiologi,Department of Microbiology
Hjort, Klas, 1964- (author)
Uppsala universitet,Mikrosystemteknik
show less...
 (creator_code:org_t)
 
Royal Society of Chemistry (RSC), 2009
2009
English.
In: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 9, s. 1193-1199
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect   were visualized and verified using a fluorescent dye primed in the   device. First the particle behaviour was studied in detail using 9.9 and 1.0 mu m particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm(2). The soft inertial   effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re-p), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above   10(8)/mL), using a sample flow rate of up to 18 mL/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Läkemedelskemi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Medicinal Chemistry (hsv//eng)

Keyword

TECHNOLOGY
TEKNIKVETENSKAP

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Wu, Zhigang
Willing, B.
Bjerketorp, Joak ...
Jansson, Janet
Hjort, Klas, 196 ...
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Basic Medicine
and Medicinal Chemis ...
Articles in the publication
Lab on a Chip
By the university
Uppsala University
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view