SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-153315"
 

Sökning: id:"swepub:oai:DiVA.org:uu-153315" > Low-frequency picot...

Low-frequency picotesla field detection with planar Hall effect bridge sensors

Persson, Anders, 1982- (författare)
Uppsala universitet,Ångström Space Technology Centre (ÅSTC)
Bejhed, Rebecca (författare)
Uppsala universitet,Fasta tillståndets fysik
Gunnarsson, Klas (författare)
Uppsala universitet,Fasta tillståndets fysik
visa fler...
Nguyen, Hugo (författare)
Uppsala universitet,Ångström Space Technology Centre (ÅSTC)
Dalslet, Bjarke T. (författare)
Dept. of Micro- and Nanotechnology, Technical University of Denmark
Oesterberg, Frederik W. (författare)
Dept. of Micro- and Nanotechnology, Technical University of Denmark
Hansen, Mikkel F. (författare)
Dept. of Micro- and Nanotechnology, Technical University of Denmark
Svedlindh, Peter (författare)
Uppsala universitet,Fasta tillståndets fysik
visa färre...
 (creator_code:org_t)
Engelska.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • The applicability of miniaturized magnetic field sensors are being explored in several fields of magnetic field detection, due to their integratability, low mass, and potentially low cost. In this respect, different thin-film technologies, especially those employing magnetoresistance, show great potential, being compatible with micro- and nanotechnology batch processing. For low-frequency magnetic field detection, sensors based on the planar Hall effect, especially planar Hall effect bridge (PHEB) sensors, show promising performance given their inherent low-field linearity, limited hysteresis and moderate noise figure. In this work, the applicability of such PHEB sensors to different areas is investigated. An analytical model was constructed, to estimate the performance of an arbitrary PHEB in terms of e.g. sensitivity and detectivity. The model incorporates a number of approximations and, to validate the results, modelled data is compared to measurements on actual PHEBs. It is concluded that the model slightly underestimated the detectivity, especially at low frequencies and when demagnetizing effects becomes apparent. The model is also sensitive to fabrication process induced variations of the material parameters of the sensors. Nevertheless, accounting for these discrepancies, the modelled data is typically within 10% from the experimental data and the model can be used to estimate the performance of a particular PHEB design. The model is also used to establish a design process for optimizing a PHEB to a particular set of requirements on the bandwidth, detectivity, compliance voltage and amplified signal-to-noise ratio. By applying this design process, the size, sensitivity, resistance, bias current and power consumption of the PHEB can be calculated. The model shows that PHEBs are applicable to several different science areas including archaeological surveying, satellite attitude determination, scientific space missions, and magnetic bead detection in lab-on-a-chip applications.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Nyckelord

Materials science
Teknisk materialvetenskap
Engineering Science with specialization in Solid State Physics
Teknisk fysik med inriktning mot fasta tillståndets fysik
Teknisk fysik med inriktning mot mikrosystemteknik
Engineering Science with specialization in Microsystems Technology

Publikations- och innehållstyp

vet (ämneskategori)
ovr (ämneskategori)

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy