SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-154529"
 

Sökning: id:"swepub:oai:DiVA.org:uu-154529" > Hydrogen-oxygen fla...

Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model

Ivanov, M. F. (författare)
Kiverin, A. D. (författare)
Liberman, Michael (författare)
Uppsala universitet,Institutionen för fysik och astronomi
 (creator_code:org_t)
2011
2011
Engelska.
Ingår i: Physical Review E - Statistical, Nonlinear and Soft Matter Physics. - 1539-3755. ; 83:5, s. 056313-
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The features of flame acceleration in channels with wall friction and the deflagration to detonation transition (DDT) are investigated theoretically and using high resolution numerical simulations of two-dimensional reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, and a detailed chemical reaction mechanism for hydrogen-oxygen gaseous mixture. It is shown that in a wide channel, from the beginning, the flame velocity increases exponentially for a short time and then flame acceleration decreases, ending up with the abrupt increase of the combustion wave velocity and the actual transition to detonation. In a thin channel with a width smaller than the critical value, the exponential increase of the flame velocity is not bounded and ends up with the transition to detonation. The transition to detonation occurs due to the pressure pulse, which is formed at the tip of the accelerating flame. The amplitude of the pressure pulse grows exponentially due to a positive feedback coupling between the pressure pulse and the heat released in the reaction. Finally, large amplitude pressure pulse steepens into a strong shock coupled with the reaction zone forming the overdriven detonation. The evolution from a temperature gradient to a detonation via the Zeldovich gradient mechanism and its applicability to the deflagration-to-detonation transition is investigated for combustible materials whose chemistry is governed by chain-branching kinetics. The results of the high resolution simulations are fully consistent with experimental observations of the flame acceleration and DDT.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Nyckelord

Physics
Fysik

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Ivanov, M. F.
Kiverin, A. D.
Liberman, Michae ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Fysik
Artiklar i publikationen
Physical Review ...
Av lärosätet
Uppsala universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy