SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:uu-160630"
 

Search: id:"swepub:oai:DiVA.org:uu-160630" > Building Systems fo...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Building Systems for Electronic Probing of Single Low Dimensional Nano-objects : Application to Molecular Electronics and Defect Induced Graphene

Jafri, Syed Hassan Mujtaba, 1979- (author)
Uppsala universitet,Tillämpad materialvetenskap,Electron Microscopy and Nanoenginnering
Leifer, Klaus, Professor (thesis advisor)
Uppsala universitet,Experimentell fysik,Tillämpad materialvetenskap
Quinn, Aidan, Dr. (opponent)
University College Cork, Tyndall National Institute Ireland, Nanotechnology group
 (creator_code:org_t)
ISBN 9789155482121
Uppsala : Acta Universitatis Upsaliensis, 2011
English 109 s.
Series: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 877
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Nano-objects have unique properties due to their sizes, shapes and structure. When electronic properties of such nano-objects are used to build devices, the control of interfaces at atomic level is required. In this thesis, systems were built that can not only electrically characterize nano-objects, but also allow to analyze a large number of individual nano-objects statistically at the example of graphene and nanoparticle-molecule-nanoelectrode junctions. An in-situ electrical characterization system was developed for the analysis of free standing graphene sheets containing defects created by an acid treatment. The electrical characterization of several hundred sheets revealed that the resistance in acid treated graphene sheets decreased by 50 times as compared to pristine graphene and is explained by the presence of di-vacancy defects. However, the mechanism of defect insertion into graphene is different when graphene is bombarded with a focused ion beam and in this case, the resistance of graphene increases upon defect insertion. The defect insertion becomes even stronger at liquid N2 temperature. A molecular electronics platform with excellent junction properties was fabricated where nanoparticle-molecule chains bridge 15-30nm nanoelectrodes. This approach enabled a systematic evaluation of junctions that were assembled by functionalizing electrode surfaces with alkanethiols and biphenyldithiol. The variations in the molecular device resistance were several orders of magnitude and explained by variations in attachment geometries of molecules.  The spread of resistance values of different devices was drastically reduced by using a new functionalization technique that relies on coating of gold nanoparticles with trityl protected alkanedithiols, where the trityl group was removed after trapping of nanoparticles in the electrode gap. This establishment of a reproducible molecular electronics platform enabled the observation of vibrations of a few molecules by inelastic tunneling spectroscopy. Thus this system can be used extensively to characterize molecules as well as build devices based on molecules and nanoparticles. 

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology (hsv//eng)

Keyword

Graphene
defect induced graphene
molecular electronics
nanoelectrodes
nanoparticles
conductivity
junction
nanomaterial
focused ion beam
surface functionalization
electrical characterization
Teknisk fysik med inriktning mot materialanalys
Engineering Science with specialization in Materials Analysis

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Jafri, Syed Hass ...
Leifer, Klaus, P ...
Quinn, Aidan, Dr ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Nano technology
Parts in the series
Digital Comprehe ...
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view