SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-268929"
 

Sökning: id:"swepub:oai:DiVA.org:uu-268929" > Combining strong in...

Combining strong interface recombination with bandgap narrowing and short diffusion length in Cu2ZnSnS4 device modeling

Frisk, Christopher, 1985- (författare)
Uppsala universitet,Fasta tillståndets elektronik,Ångström Solar Cell Group
Ericson, Tove (författare)
Uppsala universitet,Fasta tillståndets elektronik
Li, Shu-Yi (författare)
Uppsala universitet,Fasta tillståndets elektronik
visa fler...
Szaniawski, Piotr (författare)
Uppsala universitet,Fasta tillståndets elektronik
Olsson, Jörgen (författare)
Uppsala universitet,Fasta tillståndets elektronik
Platzer-Björkman, Charlotte (författare)
Uppsala universitet,Fasta tillståndets elektronik
visa färre...
 (creator_code:org_t)
Elsevier BV, 2016
2016
Engelska.
Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248 .- 1879-3398. ; 144, s. 364-370
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • In this work we establish a device model in SCAPS, incorporating bandgap narrowing, short minority carrier diffusion length and interface recombination. The model is based on a reference device with standard structure; sputtered Mo on soda lime glass, a reactively sputtered and annealed Cu2ZnSnS4 (CZTS) absorber layer, chemical bath deposited CdS and sputtered i-ZnO buffer layers, and front contact formed with sputtered ZnO:Al and an evaporated Ni/Al/Ni grid. The efficiency of the reference device is 6.7%. Model parameter values of the absorber layer are based on the analysis of temperature dependent current–voltage (J–V–T) measurements, capacitance–voltage (C–V) and drive-level capacitance profiling (DLCP) measurements, performed on the reference device, and on the comparison of simulated and measured quantum efficiency (QE) and current–voltage (J–V) performance. Additional parameters are taken from literature. The key elements, electron–hole pair generation and recombination in the absorber layer, are the main focus in this study. Reported values of the absorption coefficient of CZTS vary around one order of magnitude when comparing data from reflectance–transmission (R–T) measurements with ellipsometry measurements, and calculations. Therefore, a modified semi-empirical absorption coefficient, extracted from R–T and QE measurements, with the depletion width from CV and DLCP, is presented and used in this study. The dominating recombination path is evaluated with J–V–T   analysis and the zero Kelvin activation energy (EA,0) is extracted from both temperature dependent open circuit voltage (VOC) and from modified Arrhenius plots. In each case,is found to be substantially smaller than the bandgap energy, even when considering bandgap narrowing due to disorder, which is an indication that the deficit observed in our CZTS device dominated by interface recombination. Finally, a complete device model is established, with J–V   and QE simulations in good agreement with corresponding measurements, where the interface has the biggest impact on the Voc deficit, but with clear contribution from bulk recombination, with minority carrier diffusion length 250 nm, and from bandgap narrowing, giving a lower than nominal bandgap energy of 1.35 eV.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Nyckelord

absorption coefficient
CZTS
interface recombination
kesterite
modeling
simulation.

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy