SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-284085"
 

Sökning: id:"swepub:oai:DiVA.org:uu-284085" > Stochastic Simulati...

Stochastic Simulation of Multiscale Reaction-Diffusion Models via First Exit Times

Meinecke, Lina, 1986- (författare)
Uppsala universitet,Avdelningen för beräkningsvetenskap,Numerisk analys
Lötstedt, Per, Professor (preses)
Uppsala universitet,Avdelningen för beräkningsvetenskap
Engblom, Stefan, Docent (preses)
Uppsala universitet,Avdelningen för beräkningsvetenskap
visa fler...
Grima, Ramon, Reader (opponent)
University of Edinburgh
visa färre...
 (creator_code:org_t)
ISBN 9789155495824
Uppsala : Acta Universitatis Upsaliensis, 2016
Engelska 53 s.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Mathematical models are important tools in systems biology, since the regulatory networks in biological cells are too complicated to understand by biological experiments alone. Analytical solutions can be derived only for the simplest models and numerical simulations are necessary in most cases to evaluate the models and their properties and to compare them with measured data.This thesis focuses on the mesoscopic simulation level, which captures both, space dependent behavior by diffusion and the inherent stochasticity of cellular systems. Space is partitioned into compartments by a mesh and the number of molecules of each species in each compartment gives the state of the system. We first examine how to compute the jump coefficients for a discrete stochastic jump process on unstructured meshes from a first exit time approach guaranteeing the correct speed of diffusion. Furthermore, we analyze different methods leading to non-negative coefficients by backward analysis and derive a new method, minimizing both the error in the diffusion coefficient and in the particle distribution.The second part of this thesis investigates macromolecular crowding effects. A high percentage of the cytosol and membranes of cells are occupied by molecules. This impedes the diffusive motion and also affects the reaction rates. Most algorithms for cell simulations are either derived for a dilute medium or become computationally very expensive when applied to a crowded environment. Therefore, we develop a multiscale approach, which takes the microscopic positions of the molecules into account, while still allowing for efficient stochastic simulations on the mesoscopic level. Finally, we compare on- and off-lattice models on the microscopic level when applied to a crowded environment.

Ämnesord

NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)

Nyckelord

computational systems biology
diffusion
first exit times
unstructured meshes
reaction-diffusion master equation
macromolecular crowding
excluded volume effects
finite element method
backward analysis
stochastic simulation
Beräkningsvetenskap med inriktning mot numerisk analys
Scientific Computing with specialization in Numerical Analysis

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy