SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-311358"
 

Sökning: id:"swepub:oai:DiVA.org:uu-311358" > Encasing Si particl...

Encasing Si particles within a versatile TiO2−xFx layer as an extremely reversible anode for high energy-density lithium-ion battery

Ma, Yue (författare)
Uppsala universitet,Strukturkemi
Asfaw, Habtom Desta (författare)
Uppsala universitet,Strukturkemi
Liu, Chenjuan (författare)
Uppsala universitet,Strukturkemi
visa fler...
Wei, Bingqing (författare)
Centre for Nano Energy Materials, State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China; Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
Edström, Kristina (författare)
Uppsala universitet,Strukturkemi
visa färre...
 (creator_code:org_t)
Elsevier BV, 2016
2016
Engelska.
Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855. ; 30, s. 745-755
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The chemical phenomena occurring at the electrode-electrolyte interfaces profoundly determine the cycle behavior of a lithium ion battery. In this work, we report that silicon-based anodes can attain enhanced levels of capacity retention, rate performance and lifespan when a versatile protective layer of, F-doped anatase (TiO2−xFx), is applied towards taming the interfacial chemistry of the silicon particles. With careful choice of titanium fluoride as a precursor, internal voids can be generated upon in-situ fluoride etching of the native oxide layer and are used to alleviate the mechanical stress caused by volume expansion of silicon during cycling. In the course of F-doping, part of the Ti4+(d0) ions in anatase are reduced to Ti3+(d1), thereby increasing charge carriers in the crystal structure. Hence, the multifunctional F-doped TiO2−x coating, not only minimizes the direct exposure of the Si surface to the electrolyte, but also improves the electronic conductivity via inter-valence electron hopping. The best-performing composite electrode, Si@TiO2−xFx-3, delivered a satisfactory performance in both half-cell and full-cell configurations. Furthermore, we present a study of 1) the Si valence change at the buried interface using synchrotron based hard X-ray photoelectron spectroscopy, and 2) the phase transformation of the electrode monitored in operando using X-ray diffraction. Based on these characterizations, we observe that the Li+ conducting intermediate phase (LixTiO2−xFx) formed inside the surface coating enables deep lithiation and delithiation of the silicon during battery operation, and thus increase the capacity that can be accessed from the electrodes.

Ämnesord

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Nyckelord

Si anode
Versatile interfacial layer
Operando X-ray Diffraction
Kinetic activation
High energy-density

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Ma, Yue
Asfaw, Habtom De ...
Liu, Chenjuan
Wei, Bingqing
Edström, Kristin ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Kemi
och Materialkemi
Artiklar i publikationen
Nano Energy
Av lärosätet
Uppsala universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy