SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-393736"
 

Sökning: id:"swepub:oai:DiVA.org:uu-393736" > Engineering Molecul...

Engineering Molecular Ligand Shells on Quantum Dots for Quantitative Harvesting of Triplet Excitons Generated by Singlet Fission

Allardice, Jesse R. (författare)
Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England
Thampi, Arya (författare)
Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England
Dowland, Simon (författare)
Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England
visa fler...
Xiao, James (författare)
Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England
Gray, Victor (författare)
Uppsala universitet,Fysikalisk kemi,Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England
Zhang, Zhilong (författare)
Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England
Budden, Peter (författare)
Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England
Petty, Anthony J., II (författare)
Univ Kentucky, Ctr Appl Energy Res, Res Pk Dr, Lexington, KY 40511 USA
Davis, Nathaniel J. L. K. (författare)
Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England;Victoria Univ Wellington, MacDiarmid Inst Adv Mat & Nanotechnol, Dodd Walls Ctr Photon & Quantum Technol, Sch Chem & Phys Sci, Wellington 6140, New Zealand
Greenham, Neil C. (författare)
Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England
Anthony, John E. (författare)
Univ Kentucky, Ctr Appl Energy Res, Res Pk Dr, Lexington, KY 40511 USA
Rao, Akshay (författare)
Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 OHE, England
visa färre...
 (creator_code:org_t)
2019-07-23
2019
Engelska.
Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 141:32, s. 12907-12915
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Singlet fission is an exciton multiplication process in organic molecules in which a photogenerated spin-singlet exciton is rapidly and efficiently converted to two spin-triplet excitons. This process offers a mechanism to break the Shockley-Queisser limit by overcoming the thermalization losses inherent to all single-junction photovoltaics. One of the most promising methods to harness the singlet fission process is via the efficient extraction of the dark triplet excitons into quantum dots (QDs) where they can recombine radiatively, thereby converting high-energy photons to pairs of low-energy photons, which can then be captured in traditional inorganic PVs such as Si. Such a singlet fission photon multiplication (SF-PM) process could increase the efficiency of the best Si cells from 26.7% to 32.5%, breaking the Shockley-Queisser limit. However, there has been no demonstration of such a singlet fission photon multiplication (SF-PM) process in a bulk system to date. Here, we demonstrate a solution-based bulk SF-PM system based on the singlet fission material TIPS-Tc combined with PbS QDs. Using a range of steady-state and time-resolved measurements combined with analytical modeling we study the dynamics and mechanism of the triplet harvesting process. We show that the system absorbs >95% of incident photons within the singlet fission material to form singlet excitons, which then undergo efficient singlet fission in the solution phase (135 +/- 5%) before quantitative harvesting of the triplet excitons (95 +/- 5%) via a low concentration of QD acceptors, followed by the emission of IR photons. We find that in order to achieve efficient triplet harvesting it is critical to engineer the surface of the QD with a triplet transfer ligand and that bimolecular decay of triplets is potentially a major loss pathway which can be controlled via tuning the concentration of QD acceptors. We demonstrate that the photon multiplication efficiency is maintained up to solar fluence. Our results establish the solution-based SF-PM system as a simple and highly tunable platform to understand the dynamics of a triplet energy transfer process between organic semiconductors and QDs, one that can provide clear design rules for new materials.

Ämnesord

NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy