SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-420097"
 

Sökning: id:"swepub:oai:DiVA.org:uu-420097" > Tides on Other Eart...

Tides on Other Earths : Implications for Exoplanet and Palaeo-Tidal Simulations

Blackledge, B. W. (författare)
Bangor Univ, Sch Ocean Sci, Menai Bridge, Gwynedd, Wales
Green, J. A. M. (författare)
Bangor Univ, Sch Ocean Sci, Menai Bridge, Gwynedd, Wales
Barnes, R. (författare)
Univ Washington, Dept Astron, Seattle, WA 98195 USA
visa fler...
Way, Michael J. (författare)
Uppsala universitet,Teoretisk astrofysik,NASA, Goddard Inst Space Studies, New York, NY 10025 USA; Goddard Space Flight Ctr, Sellers Exoplanet Environm, Greenbelt, MD USA
visa färre...
 (creator_code:org_t)
2020
2020
Engelska.
Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:12
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • A key controller of a planet's rotational evolution, and hence habitability, is tidal dissipation, which on Earth is dominated by the ocean tides. Because exoplanet or deep‐time Earth topographies are unknown, a statistical ensemble is used to constrain possible tidal dissipation rates on an Earth‐like planet. A dedicated tidal model is used together with 120 random continental configurations to simulate Earth's semidiurnal lunar tide. The results show a possible ocean tidal dissipation range spanning 3 orders of magnitude, between 2.3 GWto 1.9 TW (1 TW=1012 W). When model resolution is considered, this compares well with theoretical limits derived for the energetics of Earth's present‐day deep ocean. Consequently, continents exert a fundamental control on tidal dissipation rates and we suggest that plate tectonics on a planet will induce a time‐varying dissipation analogous to Earth's. This will alter rotational periods over millions of years and further complicate the role of tides for planetary evolution.Plain Language SummaryThe daylength of a planet is key for habitability because it regulates the rate with which solar radiation is received and redistributed at the surface. A main controller of a planet's daylength is the ocean tide, because the dissipation of tidal energy works as a brake on the planet's spin, increasing the daylength. Tides are sensitive to the continental arrangement on a planet, but there are no details of the surface of any exoplanet and only limited information of what Earth looked like in the distant past. The change in Earth's daylength forces the Moon to recede into a higher orbit, but the present‐day recession rate is very high and does not fit our age models of the moon, implying that the tides must have been much weaker in the distant past. Here, we use a series of tidal predictions for random continental configurations of Earth to provide a range of tidal dissipation rates and thus an estimate of how the tides in the deep past may have evolved as Earth's continents grew more and more complex. This research also provides a range of dissipation rates that can be used for simulations of the rotational and orbital evolution of exoplanets.

Ämnesord

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Blackledge, B. W ...
Green, J. A. M.
Barnes, R.
Way, Michael J.
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Fysik
och Astronomi astrof ...
Artiklar i publikationen
Geophysical Rese ...
Av lärosätet
Uppsala universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy