SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:uu-445843"
 

Sökning: onr:"swepub:oai:DiVA.org:uu-445843" > Forecasting the pro...

Forecasting the propagation paths of fluid-driven fractures, particularly dikes and inclined sheets

bazargan, mohsen (författare)
gudmundsson, agust (författare)
Adeoye-Akinde, kayode (författare)
visa fler...
Drymoni, Kyriaki (författare)
visa färre...
2020
2020
Engelska.
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • It is of great importance in many fields to be able to forecast the likely propagation paths of fluid-driven fractures. These include mineral veins, human-made hydraulic fractures, and dikes/inclined sheets. The physical principles that control the propagation of all fluid-driven fractures are the same. Here the focus is on dikes and inclined sheets where the selected path determines whether, where, and when a particular dike/sheet reaches the surface to erupt. Here we provide analytical and numerical models on dike/sheet paths in crustal segments (including volcanoes) that include layers of various types (lava flows, pyroclastic flows, tuff layers, soil layers, etc) as well as mechanically weak contacts and faults. The modelling results are then compared with, and tested on, actual data of two types. (a) Seismic data on the paths of dikes/sheets as well as human-made hydraulic fractures, and (b) field data on the actual propagation paths of dikes/sheets in layered and faulted rocksThe numerical results show that, particularly in stratovolcanoes, the paths are likely to be complex with common deflections along with layer contacts, in agreement with field observations.  Also, some dikes/sheets may use existing faults as parts of their paths, primarily steeply dipping and recently active normal faults. The propagation path is thus not entirely in pure mode I but rather partly in a mixed-mode. The energy required to propagate the dike/sheet is mainly the surface energy needed to rupture the rock, form two new surfaces and move them apart as the fracture propagates. The energy available to drive the fracture is the stored elastic energy in the hosting crustal segment.From its point of initiation in the magma-chamber roof, a dike/sheet can, theoretically, select any one of an infinite number of paths to follow to its point of arrest or eruption. It is shown that the eventual path selected is the one of least action, that is, the path along which the time integral of the difference between the kinetic and potential energies is an extremum (normally a minimum) relative to all other possible paths with the same endpoints. If the kinetic energy is omitted, and there are no constraints, then the least action becomes the minimum potential energy, which was postulated as a basis for understanding dike propagation by Gudmundsson (1986). Here it is shown how this theoretical framework can help us make reliable forecasts of dike/sheet paths and associated volcanic eruptions.

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geofysik (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geophysics (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
kon (ämneskategori)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy