SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-448993"
 

Sökning: id:"swepub:oai:DiVA.org:uu-448993" > Binary acoustic tra...

Binary acoustic trapping in a glass capillary

Fornell, Anna (författare)
Uppsala University,Lund University,Lunds universitet,Uppsala universitet,Science for Life Laboratory, SciLifeLab,Mikrosystemteknik,Lund Univ, MAX Lab 4, S-22484 Lund, Sweden,EMBLA,MAX IV-laboratoriet,MAX IV Laboratory
Baasch, Thierry (författare)
Lund University,Lunds universitet,Avdelningen för Biomedicinsk teknik,Institutionen för biomedicinsk teknik,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Biomedical Engineering,Departments at LTH,Faculty of Engineering, LTH
Johannesson, Carl (författare)
Lund University,Lunds universitet,Avdelningen för Biomedicinsk teknik,Institutionen för biomedicinsk teknik,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Biomedical Engineering,Departments at LTH,Faculty of Engineering, LTH
visa fler...
Nilsson, Johan (författare)
Lund University,Lunds universitet,Avdelningen för Biomedicinsk teknik,Institutionen för biomedicinsk teknik,Institutioner vid LTH,Lunds Tekniska Högskola,Department of Biomedical Engineering,Departments at LTH,Faculty of Engineering, LTH
Tenje, Maria (författare)
Uppsala University,Uppsala universitet,Science for Life Laboratory, SciLifeLab,Mikrosystemteknik,EMBLA
visa färre...
 (creator_code:org_t)
2021-06-21
2021
Engelska.
Ingår i: Journal of Physics D. - : Institute of Physics Publishing (IOPP). - 0022-3727 .- 1361-6463. ; 54:35
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Acoustic trapping is a useful method for handling biological samples in microfluidic systems. The aim of this work is twofold: first to investigate the physics behind acoustic trapping in a glass capillary and secondly to perform binary acoustic trapping. The latter is achieved by increasing the density of the fluid in the trapping channel. The trapping device consisted of a glass capillary with a rectangular inner cross-section (height 200 µm × width 2000 µm) equipped with a small piezoelectric transducer. The piezoelectric transducer was actuated at 4 MHz to generate a localised half-wavelength acoustic standing-wave-field in the capillary, comprising of a pressure field and a velocity field. Under acoustic actuation, only particles with higher density than the fluid, i.e. having a positive dipole scattering coefficient, were trapped in the flow direction. The numerical and analytical modelling of the system show that the trapping force which retains the particles against the flow depends only on the dipole scattering coefficient in the pressure nodal plane of the acoustic field. The analytical model also reveals that the retention force is proportional to the dipole scattering coefficient, which agrees with our experimental findings. Next, we showed that in a mixture of melamine particles and polystyrene particles in a high-density fluid it is possible to selectively trap melamine particles, since melamine particles have higher density than polystyrene particles.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)
NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)

Nyckelord

acoustofluidics
separation
trapping
ultrasound
Teknisk fysik med inriktning mot mikrosystemteknik
Engineering Science with specialization in Microsystems Technology
acoustofluidics
separation
trapping
ultrasound

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy