SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:uu-456153"
 

Sökning: id:"swepub:oai:DiVA.org:uu-456153" > Quantum-Based Molec...

Quantum-Based Molecular Dynamics Simulations Using Tensor Cores

Finkelstein, Joshua (författare)
Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
Smith, Justin S. (författare)
Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
Mniszewski, Susan M. (författare)
Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
visa fler...
Barros, Kipton (författare)
Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
Negre, Christian F. A. (författare)
Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
Rubensson, Emanuel H. (författare)
Uppsala universitet,Tillämpad beräkningsvetenskap,Avdelningen för beräkningsvetenskap,Numerisk analys
Niklasson, Anders M. N. (författare)
Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, United States
visa färre...
 (creator_code:org_t)
2021-10-01
2021
Engelska.
Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 17:10, s. 6180-6192
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Tensor cores, along with tensor processing units, represent a new form of hardware acceleration specifically designed for deep neural network calculations in artificial intelligence applications. Tensor cores provide extraordinary computational speed and energy efficiency but with the caveat that they were designed for tensor contractions (matrix-matrix multiplications) using only low-precision floating-point operations. Despite this perceived limitation, we demonstrate how tensor cores can be applied with high efficiency to the challenging and numerically sensitive problem of quantum-based Born-Oppenheimer molecular dynamics, which requires highly accurate electronic structure optimizations and conservative force evaluations. The interatomic forces are calculated on-the-fly from an electronic structure that is obtained from a generalized deep neural network, where the computational structure naturally takes advantage of the exceptional processing power of the tensor cores and allows for high performance in excess of 100 Tflops on a single Nvidia A100 GPU. Stable molecular dynamics trajectories are generated using the framework of extended Lagrangian Born-Oppenheimer molecular dynamics, which combines computational efficiency with long-term stability, even when using approximate charge relaxations and force evaluations that are limited in accuracy by the numerically noisy conditions caused by the low-precision tensor core floating-point operations. A canonical ensemble simulation scheme is also presented, where the additional numerical noise in the calculated forces is absorbed into a Langevin-like dynamics.

Ämnesord

NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy